In the English-language master’s programme “Mathematical Physics”, you will learn general principles of mathematical physics and acquire in-depth knowledge in selected topics. You will apply the knowledge you learn in the programme to describe, analyse, and solve complex problems. You will transfer concepts to related questions in other or interdisciplinary fields. You will learn to read and understand the latest specialist literature. Under guidance, you will learn to conduct independent research and complete your studies with an independent research paper, the 23-week master’s thesis.

At a glance

  • Field of study

    natural and earth science
  • Degree type

    postgraduate
  • Degree

    Master of Science
  • Language of instruction

    English
  • Full/part-time

    full-time, part-time
  • Course start

    winter semester
  • Admission restriction

    without admission restriction
  • Standard period of study

    four semesters

  • ECTS credits

    120

Requirements

  • Usually a bachelor’s degree in mathematics, physics or computer science or
  • a bachelor’s degree in a subject other than the aforementioned subjects that includes the following contents:
    • Knowledge of algebra and analysis amounting to 30 credits; up to 10 credits can be credited from other areas of mathematics
    • Knowledge in the field of theoretical physics or in fields related to theoretical physics in terms of content (e.g. quantum mechanics, experimental physics, complex and meteorological systems, dynamic systems, differential equations) amounting to 20 credits
  • Proof of knowledge of English at B2 level of the Common European Framework of Reference for Languages (or equivalent)

 

The fulfilment of these requirements is checked by the faculty, which issues a notification. This serves as proof of the corresponding admission requirements.

Contents

The Mathematical Physics master’s course is a consecutive master’s course taught in English. Since the course is taught in English, you will acquire important skills for research work in internationally oriented working groups or companies.

The master’s programme consists of two one-year phases. The two modules on mathematical physics establish the groundwork for the first phase. They build on your basic knowledge in mathematics and theoretical physics and form the basis for the later advanced courses. In the research phase, you will learn to conduct independent research under the guidance of a professor or experienced scientist to become part of a research group and to contribute to current research problems.

The programme structure allows students to make individual choices, therefore offering a variety of specialisation options. In addition to the wide range of topics in mathematics and theoretical physics, you can also capitalise on the extended range of elective modules, e.g. from meteorology (data assimilation or numerical weather prediction and climate modelling) or computer science (neuro-inspired data processing, artificial neural networks and machine learning, visualisation, graphs and biological networks).

Organise the master’s course according to your own interests and take courses on:

  •     Dynamic systems
  •     Differential geometry
  •     Stochastic processes
  •     Gravitation and cosmology
  •     Condensed and soft matter
  •     Partial differential equations or
  •     Particles and quantum fields

You will find various “tracks” on our degree programme page and in the study documents – these are some examples of methodologically complementary courses as guidance for you (there are actually many more possibilities):

  •     Track 1 – Gravitation/differential geometry
  •     Track 2 – Dynamic systems/stochastics
  •     Track 3 – Stochastics/condensed matter
  •     Track 4 – Quantum field theory/functional analysis
  •     Track 5 – Field theory/dynamic systems

The master’s degree programme comprises a student workload of 120 credits.

  • In the first semester, 20 credits must be taken in the compulsory area “Mathematical Physics”.
  • Usually, one compulsory elective module from the field of physics amounting to 10 credits and one compulsory elective module from the compulsory elective field of mathematics amounting to 10 credits must be taken in the first or second semester.
  • Modules from elective areas, including the extended elective area, amounting to 30 credits must be selected in the first to third semesters. Modules with a maximum of 10 credits can be selected from the extended elective area.
  • Usually, a compulsory elective module (main seminar) amounting to 5 credits and the research laboratory course amounting to 15 credits must be taken in the third semester.
  • The degree programme is completed in the fourth semester with the master’s thesis, which is worth 30 credits.
  • International – the course is taught in English
  • Interdisciplinary – joint initiative of the mathematics and physics departments
  • Develop analytical skills – learn to solve complex problems and apply concepts to related areas
  • Top-level research – supported by the local Max Planck Institute for Mathematics in the Sciences

Other major benefits:

  • Study in a lively place with a long tradition in mathematical physics.
  • Enjoy small courses taught by dedicated lecturers.
  • Participate in the latest projects in research groups at Leipzig University or the Max Planck Institute for Mathematics in the Sciences (MPI MiS)
  • Benefit from a high degree of flexibility and choose courses according to your own preferences.
  • Option to continue your career at the renowned graduate school International Max Planck Research School Mathematics in the Sciences (IMPRS MiS)
  • Live in a vibrant city with a rich cultural scene, affordable housing, lots of green space and nearby lakes

Due to the importance of mathematics and physics in modern society, there are many employment opportunities in science and industry. Many graduates go on to do their doctorate and benefit from excellent opportunities locally at our Institutes of Mathematics and Theoretical Physics and at the Max Planck Institute for Mathematics in the Sciences (MPI MiS), e.g. as a member of our graduate school IMPRS MiS.

Because of the shortage of specialist mathematicians, computer scientists, scientists, and engineers in Germany, you will have excellent opportunities in a wide range of careers in industry and business, including:

  • Mechanical engineering
  • Electrical engineering
  • Medical technology
  • Software development
  • Finance and insurance
  • Communication systems
  • Energy
  • Transport and logistics

There are further employment opportunities in the service sector, including:

  • Corporate consulting
  • Technology consulting
  • Scientific research institutions
  • Administration (material testing centres, quality assurance, validation, IT security)

A stay abroad is generally recommended. It must be organised by the students themselves (with the help of the respective responsible institution).

Application

Course start: winter semester
Admission restriction (NCU): no
Application period: 2 May–15 September
Application portal: AlmaWeb

Please make sure you note our further information on the pages “Online application” and “Applying for a master’s programme”.

International students can find information about application periods and how to apply on the “International” page.

Options in the winter semester: 3. semester – without restrictions on admission
Options in the summer semester: 2nd semester and 4th semester – each without restrictions on admission
Application period: 2 May–15 September for the winter semester; 1 December–15 March for the summer semester.
Application portal: AlmaWeb
Special enrolment requirements: credits form (Anrechnungsbescheid)

Further information can be found on our page “Applying for a higher semester of study”.

International students can find information about application periods and how to apply on the “International” page.