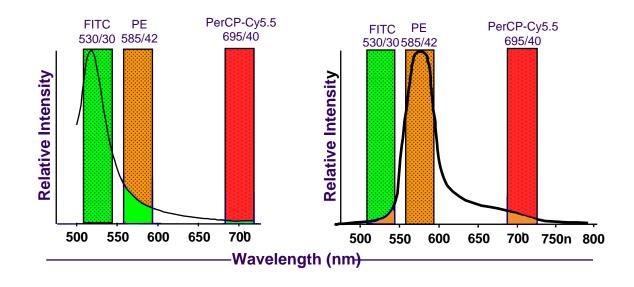


Compensation, Negative Controls and the Optimized Choice of Reagents for Multicolor Flow Cytometry

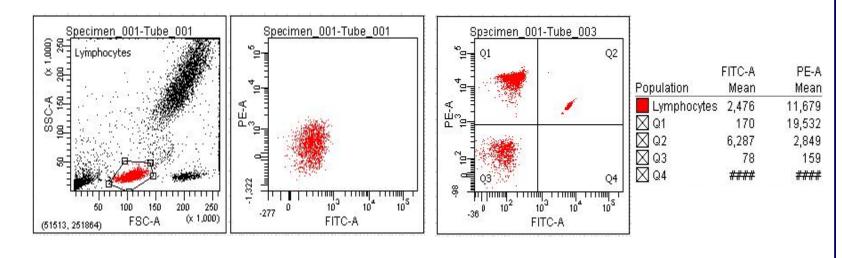
Overview

- Compensation
 - Introduction
 - Prevention of compensation related artifacts
- Negative Controls
 - Fluorescence Minus One (FMO)
 - Isotype controls
 - Transfection controls
- Combination of Reagents for Multicolor Flow Experiments
- Characteristics of Fluorochromes

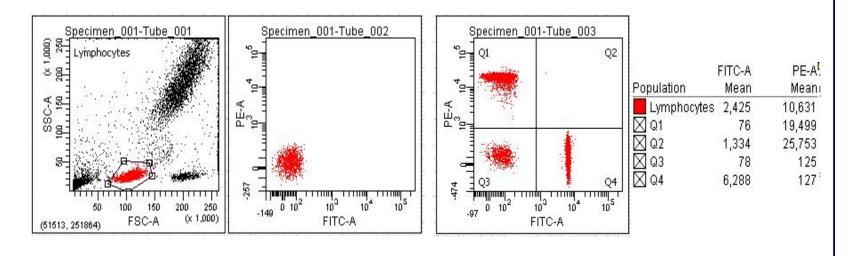


Overview

- Compensation
 - Introduction
 - Prevention of compensation related artifacts
- Negative Controls
 - Fluorescence Minus One (FMO)
 - Isotype controls
 - Transfection controls
- Combination of Reagents for Multicolor Flow Experiments
- Characteristics of Fluorochromes



- Photons reaching a specific detector are coming from
 - the fluorochrome specific for this detector
 - optical background (especially cell-type specific auto-fluorescence)
 - photon spill over from all fluorochromes present in experiment



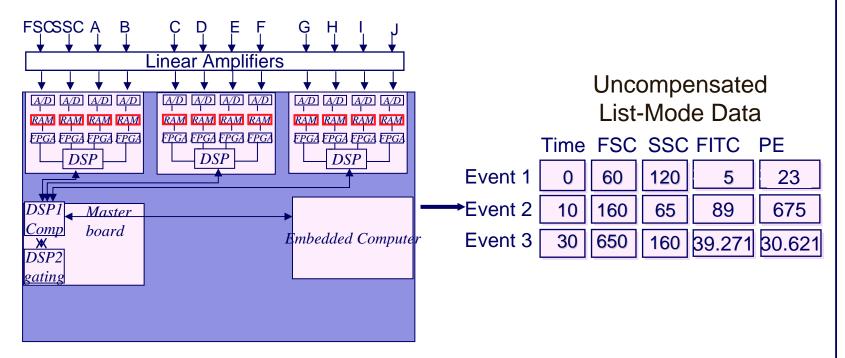
- Compensation is a procedure to subtracts from all photons that reach a detector the
 - 1) nonspecific electronic signal from cellular autofluorescence
 Application of "Instrument Settings" for one specific (type of) sample
 - 2) nonspecific electronic signal from fluorochrome spill over

- Compensation is a procedure to subtracts from all photons that reach a detector the
 - 1) nonspecific electronic signal from cellular autofluorescence
 Application of "Instrument Settings" for one specific (type of) sample
 - 2) nonspecific electronic signal from fluorochrome spill over

- 1) Generate sample-specific "Application Settings" according to SD_{EN} given in CS&T Baseline Report
 - Refer to Handout #3: Generation of Application Settings
 - Refer to the Presentation: QC for Digital Instruments: BD CS&T[™]
- Perform an Automated Compensation using the BD FACS Diva[™] software
 - Refer to Handout #4: Automated Compensation

😂 BD

Compensation: Prevention of compensation related artifacts


- To avoid errors in compensation
 - 1) never change the PMT V of fluorescent parameters (Instrument Settings) after a compensation has been calculated
 - 2) only the "median-related" = "statistic-based" compensation will result in accurate compensation values: Never compensate "by eye"
 - 3) use only compensation controls that show in minimum equally high signal intensities than the highest signal you expect in your sample
 - BUT, the signal intensities of the compensation controls have to lie within the maximum linearity range of the scales (refer to the CS&T baseline report)
 - 5) it is not recommended to re-use compensations if a tandem dye is included in the panel

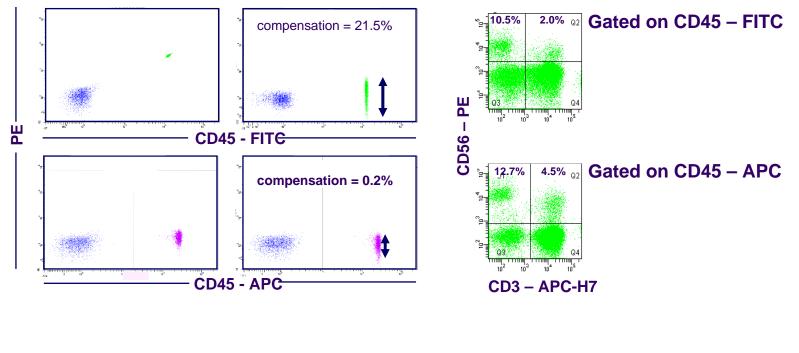
Compensation:

Prevention of compensation related artifacts

 Digital Compensation is a software-based compensation in that linear numbers are subtracted

 But if each optimal compensation is a subtraction that results in "0", why is a compensation value of 20% worse than 0.2%?

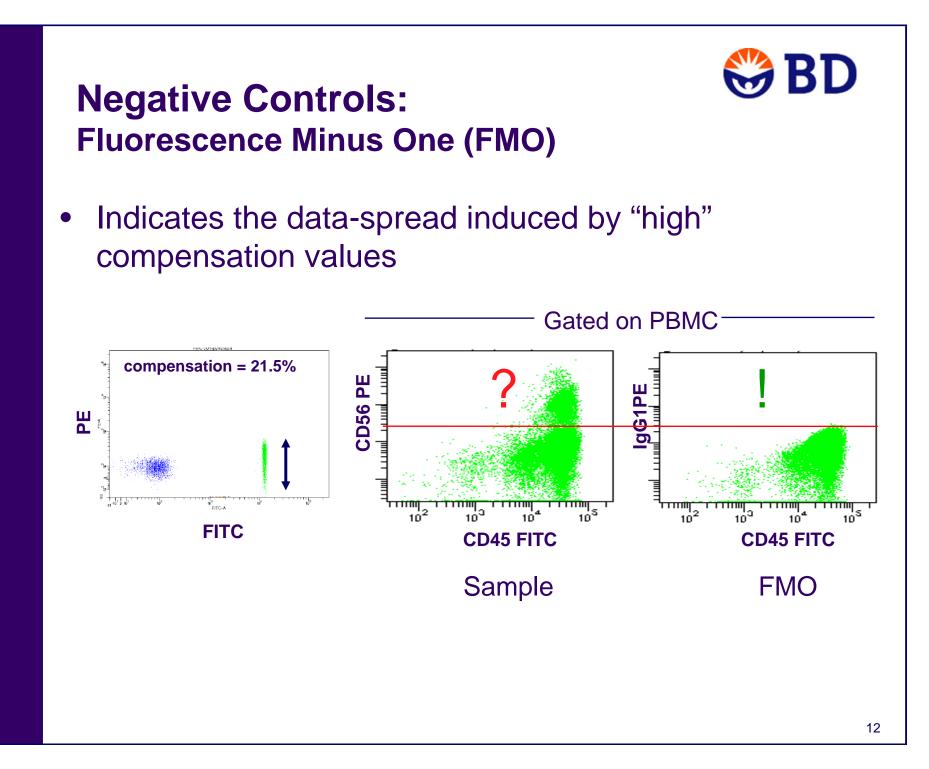
Compensation:



Prevention of compensation related artifacts

 High compensation values induce "data-spread" effects that reduce substantially the resolution between populations

Uncompensated


Compensated

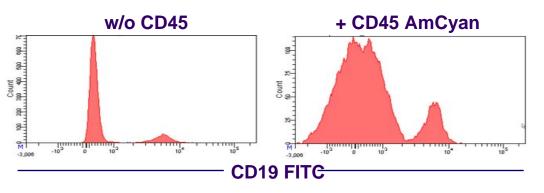
Overview

- Compensation
 - Introduction
 - Prevention of compensation related artifacts
- Negative Controls
 - Fluorescence Minus One (FMO)
 - Isotype controls
 - Transfection controls
- Combination of Reagents for Multicolor Flow Experiments
- Characteristics of Fluorochromes

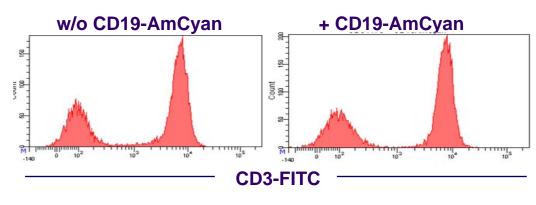
😂 BD

Negative Controls: Fluorescence Minus One (FMO)

• Fluorochrome-combinations with "high" compensation values?

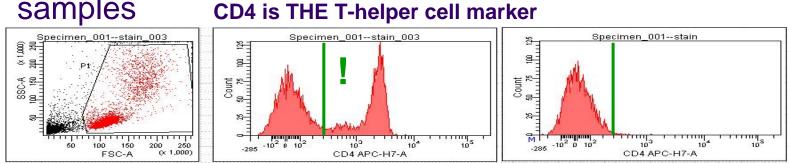

				Enable Compensation	Clear
Fluorochrome	- % Fluorochrome	Spectral Overlap	Fluorochrome	- % Fluorochrome	Spectral Overlap
· PE	FITC	13.59 🔨	* PE	FITC	25.64
 PerCP-Cy5-5 	FITC	1.90	 PerCP-Cy5-5 	FITC	2.39
· PE-Cy7	FITC	0.21	· PE-Cy7	FITC	0.49
· APC	FITC	0.01	· APC	FITC	0.00
· APC-H7	FITC	0.00	 APC-Cy7 	FITC	0.00
 horizon V450 	FITC	0.00	 V450 	FITC	0.50
 horizon V500 	FITC	0.59	 V500 	FITC	2.70
· FITC	PE	1.51	+ FITC	PE	0.82
· PerCP-Cy5-5	PE	16.44	 PerCP-Cy5-5 	PE	11.53
· PE-Cy7	PE	1.78	· PE-Cy7	PE	2.00
· APC	PE	0.03	· APC	PE	0.02
· APC-H7	PE	0.00	 APC-Cy7 	PE	0.00
 horizon V450 	PE	0.25	• V450	PE	0.00
 horizon V500 	PE	0.21	 V500 	PE	0.00
· FITC	PerCP-Cy5-5	0.00	· FITC	PerCP-Cy5-5	0.00
· PE	PerCP-Cy5-5	0.00	· PE	PerCP-Cy5-5	0.00
PE-Cy7	PerCP-Cv5-5	20.84	 PE-Cy7 	PerCP-Cy5-5	37.06
· APC	PerCP-Cy5-5	0.34	· APC	PerCP-Cy5-5	2.09

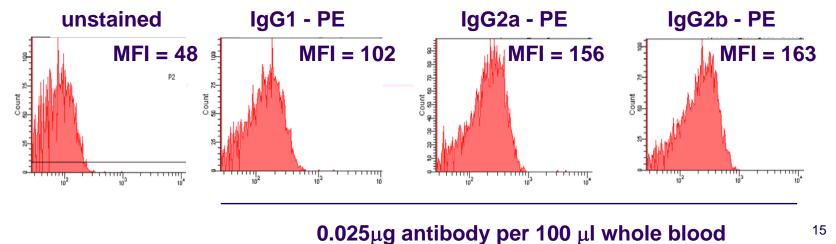
Get experience: compare of multicolor compensation matrices.


😂 BD

Negative Controls: Fluorescence Minus One (FMO)

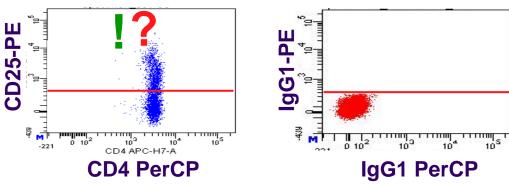
 Does every fluorochrome combination with "high" compensation values requests an FMO Control?

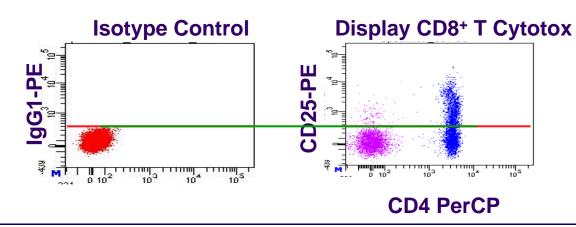

• Not if the fluorochromes bind to different cells!



Negative Controls: Isotype Control

Indicates specificity of antigen-expression in unknown
 samples
 CD4 is THE T-helper cell marker

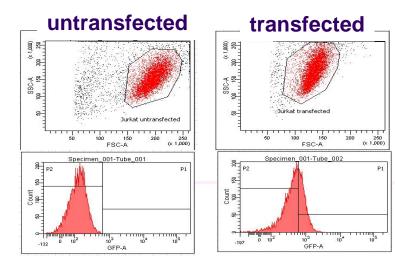

 Indicates the nonspecific binding of antibodies to membranes



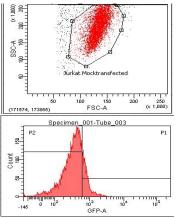
Negative Controls: Isotype Control

 Indicates specific binding of antibodies to very low and/or "smeared" expressed antigens

• But (if available and known) "biological controls" are better


Negative Controls: Isotype Control

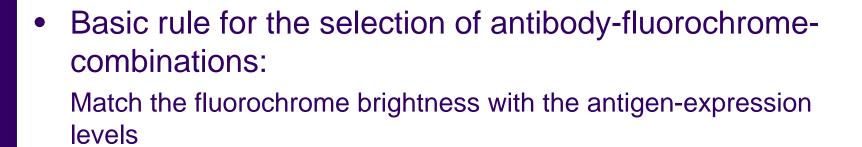
- Isotype controls HAVE to
 - show perfect match in isotype subtype
 - come from the same species
 - be labeled to the same fluorochrome
 - show equalized concentrations between specific antibody and isotype control
 - be specifically purified from free fluorochromes for intra-cellular staining
 - show comparable antibody to fluorochrome ratios


😂 BD

Negative Controls: Transfection Control ("Mock Control")

- Transfection methods using Lipofectin and similar substances enhance the autofluorescence due to the binding of plasmid-DNA to cell membranes
- Nontransfected cells are for this reason never a proper control!

Mock-transfected

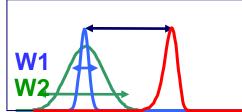

• In this example the transfection-efficiency is 0% as the plasmidpromotor shows a deletion that prevents gene-expression!

Overview

- Compensation
 - Introduction
 - Prevention of compensation related artifacts
- Negative Controls
 - Fluorescence Minus One (FMO)
 - Isotype controls
 - Transfection controls
- Combination of Reagents for Multicolor Flow Experiments
- Characteristics of Fluorochromes

Combination of Reagents for Multicolor Flow Experiments

• For further information see in Appendix 4:


http://www.bdbiosciences.com/documents/Multicolor_AppNote.pdf

BD

Combination of Reagents for Multicolor Flow Experiments

- Fluorochrome brightness?
 - The "Stain Index"

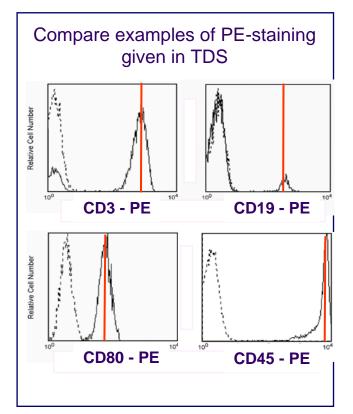
Stain Index (SI) = D_{W}

- $D = \Delta$ between positive and negative peak medians W = Spread of the background peak
- Stain indices of BD specific fluorochromes obtained on a BD FACSCanto[™] II

Reagent	Clone	Stain Index	
PE	RPA-T4	356.3	
Alexa 647	RPA-T4	313.1	
APC	RPA-T4	279.2	
PE-Cy7	RPA-T4	278.5	
PE-Cy5	RPA-T4	222.1	
PerCP-Cy5.5	Leu-3a	92.7	
BD Horizon [™] V450	RPA-T4	90.0	
Alexa 488	RPA-T4	75.4	
FITC	RPA-T4	68.9	
PerCP	Leu-3a	64.4	
APC-Cy7	RPA-T4	42.2	
Alexa 700	RPA-T4	39.9	
AmCyan	RPA-T4	24.2	
BD™ APC-H7	RPA-T4	18.0	
BD Horizon™ V500	RPA-T4	12.0	

⁻ Bright fluorochromes

Intermediate-bright fluorochromes


BD

Dim fluorochromes

😂 BD

Combination of Reagents for Multicolor Flow Experiments

- Match fluorochrome brightness with antigen-levels
 - Antigen Expression level?

Combination of Reagents for Multicolor Flow Experiments

Antigen Expression level?

Or use literature-data about # of antigen-molecules per cell			
Antigen- Expression Antigen Density Level			
CD3	80.000	++	
CD4	100.000	+++	
CD14	144.000	+++	
CD19	18.000	++	
CD25	3.000	+	
CD45	200.000	+++	
CD56	10.000	+	
CD127	2.000	+	
ntigen-expression High / Intermediate / Low:			

++++/ ++ _

Example for one proper Antibody-Fluorochrome-Match for a BD FACS Aria[™] 405nm / 688nm / 635nm

BD

```
BD Horizon<sup>™</sup> V450
FITC
BD<sup>™</sup> APC-H7
PerCP-Cy<sup>™</sup>5.5
APC
BD Horizon<sup>™</sup> V500
PE-Cy<sup>™</sup>7
```

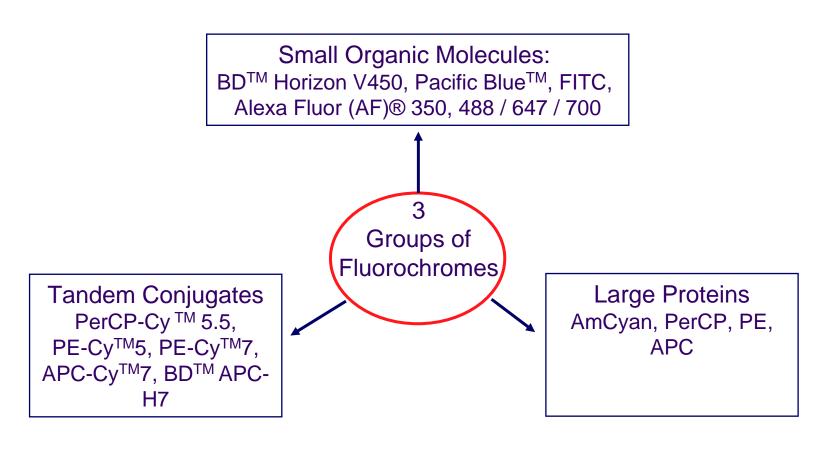
PE

Overview

- Compensation
 - Introduction
 - Prevention of compensation related artifacts
- Negative Controls
 - Fluorescence Minus One (FMO)
 - Isotype controls
 - Transfection controls
- Combination of Reagents for Multicolor Flow Experiments
- Characteristics of Fluorochromes

• Select fluorochromes according to instrument configuration

		Possible fluorochr	ome-excitation by	
Max Emission	Violet 405nm	Blue 488nm	Y-G 561nm	Red 635nm
448nm or 452nm	BD Horizon™ V450 or Pacific Blue™			
461nm				
491nm	AmCyan or BD Horizon™ V500			
519nm or 520nm		AF®488 or FITC		
578nm		PE	PE	
660nm or 668nm				APC or AF®647
667nm or 678nm or 695nm		Pe-Cy™5 or PerCP or PerCP- Cy™5.5	Pe-Cy™5 or PerCP or PerCP- Cy™5.5	
723nm				AF®700
785nm or 783nm				APC-Cy™7 or BD™ APC-H7
785nm		Pe-Cy™7	Pe-Cy™7	25



• Select fluorescent dyes according to instrument configuration

		Possible fluoroc	hrome-excitation by	у
Max Emission	Violet 405nm	Blue 488nm	Y-G 561nm	Red 635nm
461nm or 470nm or 477nm	Dapi or SYTOX- Blue or ECFP			
505 or 510nm		CFSE or EGFP		
522nm or 524nm or 528nm		SYBR-Green or SYTOX-Green or EYFP		
562nm			mOrange	
581nm			mTomato	
586nm		dsRed		
610nm			mCherry	
617nm or 647nm		PI or 7-AAD		
650nm			mPlum	
658nm				SYTOX Red
683nm				DRAQ5

BD-supported fluorochromes

Characteristics of Fluorochromes: The "blue laser fluorochromes (I)"

	Advantages	Disadvantages
1. FITC	 Most widely used Stable, long-lasting conjugates Easy conjugation (3-5 per Ig) Cheapest fluorochrome 	 One of the dullest fluorochromes Photobleaching (relevant only for microscopy) pH sensitive
2. Alexa Fluor® 488	 Very photo- and pH-stable (superior for microscopy) 	 One of the dullest fluorochromes
3. PE	 Bright reagents: IC/FCM Low backgrounds: IC/FCM 1st choice for intracellular protein/cytokine detection! Good for quantification: 1 PE per Ig (BDTMQuantiBrite) 	 Large size (240.000 D) is NOT a disadvantage!

Characteristics of Fluorochromes: The "blue laser fluorochromes (III)"

	Advantages	Disadvantages
6. PE-Cy™5	 Bright fluorochrome Useful additional fluorochrome for the LSR II 	 Unspecific binding to Fc Receptors Very strong spill over to APC: has to be adjusted often by titration Lot to lot differences in compensation Light sensitive (just keep samples in the dark)
7. PE-Cy™7	 Bright fluorochrome: Preferable above PE-Cy5 	 Lot to lot differences in compensation Light sensitive (just keep samples in the dark)

Characteristics of Fluorochromes: The "blue laser fluorochromes (II)"

	Advantages	Disadvantages
4. PerCP	 Minimal Spill over to PE 	 Dull (equivalent to FITC) Sensitive to photo-bleaching (relevant only for microscopy or high energy blue lasers. See BD FACS[™] Vantage)
5. PerCP- Cy™5.5	 Intermediate bright fluorochrome (PerCP is dim) 	 Lot to lot differences in compensation Light sensitive (just keep samples in the dark)

Characteristics of Fluorochromes: The "red laser fluorochromes (I)"

	Advantages	Disadvantages
1. APC	 Bright fluorochrome Low background: 2nd choice for intracellular protein / cytokine detection! 	 Large size (106.000 D) is NOT a disadvantage!
2. Alexa Fluor® 647	 Equivalent to APC, BUT Very photo- and pH-stable (superior for microscopy) 	/
3. Alexa Fluor® 700	 Very photostable (superior for microscopy) Additional fluorochrome for the red laser 	 Filter set not included in standard BD FACSAria[™] configuration, but easy to obtain additionally

Characteristics of Fluorochromes: The "red laser fluorochromes (II)"

	Advantages	Disadvantages
4. APC- Cy™7	 Additional red laser excited fluorochrome 	 Dim Photo-instable Fixative-sensitive Lot to lot differences in compensation
5. BD™ APC-H7	 Photo-stable Fixative-stable: Preferable above APC-Cy7 	 Dim Lot to lot differences in compensation

Characteristics of Fluorochromes: The "violet laser fluorochromes (I)"

	Advantages	Disadvantages
1. Pacific Blue™	 Little Spill over to FITC 	• dim
2. BD Horizon™ V450	 Little Spill over to FITC Intermediate bright 	/

Characteristics of Fluorochromes: The "violet laser fluorochromes (II)"

	Advantages	Disadvantages
3.AmCyan	 Before BD HorizonTM V500 and BD HorizonTM V450 the only violet-excited fluorochrome from BD 	 dim extremely strong spill over to FITC Fixative-sensitive Light-sensitive
4. BD Horizon V500	 Little spill over to FITC: highly preferable alternative to AmCyan Fixative-stable 	• Dim

- Summary:
 - There are no "bad" fluorochromes!
 - Considering limitations, all fluorochromes are usefull designing multicolor flow experiments
 - But some fluorochromes are easier to handle for multicolorcombinations than others!