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6 Basics of Optical Spectroscopy 

It is possible, with optical methods, to examine the rotational spectra of small molecules, all 
the Raman rotational spectra, the vibration spectra including the Raman spectra, and the 
electron spectra of the bonding electrons. Some of the quantum mechanical foundations of 
optical spectroscopy were already covered in chapter 3, and the optical methods will be the 
topic of chapter 7. This chapter is concerned with the relation between the structure of a 
substance to its rotational, and vibration spectra, and electron spectra of the bonding electrons. 
A few exceptions are made at the beginning of the chapter. Since the rotational spectrum of 
large molecules are examined using frequency variable microwave technology, this 
technology will be briefly explained. 
 

6.1 Rotational Spectroscopy 

6.1.1 Microwave Measurement Method 

Absorption measurements of the rotational transitions necessitates the existence of a 
permanent dipole moment. Molecules that have no permanent dipole moment, but rather an 
anisotropic polarizability perpendicular to the axis of rotation, can be measured with Raman 
scattering. Although rotational spectra of small molecules, e.g. HI, can be examined by optical 
methods in the distant infrared, the frequency of the rotational transitions is shifted to the 
range of HF spectroscopy in molecules with large moments of inertia. For this reason, 
rotational spectroscopy is often called microwave spectroscopy. 
 
For the production of microwaves, we could use electron time-of-flight tubes. The reflex 
klystron is only tunable over a small frequency range. The carcinotron (reverse wave tubes) is 
tunable over a larger range by variation of the accelerating voltage of the electron beam. The 
magnetron uses a ring shaped (toroidal) inhomogeneous delay line, which is arranged 
concentrically as an anode around a central cathode. The radial electrostatic field thus created 
is perpendicular to an axial static magnetic field, which causes circular electron paths. 
Microwave generators based on semiconductors are made using Gunn diodes or avalanche 
diodes. All time-of-flight tubes and diode oscillators together cover a range from 1 to 150 
GHz. The individual oscillators and the waveguides are, however, only useful in a certain 
portion of this range (hollow waveguides are used between 3 and 100 GHz). 
 

The measurement of microwave absorption through the sample is done with a microwave 
diode. To improve the detection sensitivity, modulation and phase sensitive demodulation is 
used (e.g. 100 kHz frequency modulation of the microwave generator or modulation in the 
kHz range of the alternating electric field acting on the sample, producing a Stark effect, see 
chapter 6.1.5). The gaseous substance to be examined must be at a low pressure (100 to 
10−3 Pa) to minimize collision broadening of the spectral lines. This happens if the number of 
collisions per molecule per second is greater than the line width (measured in Hz) of a 
collision free molecule. To improve the sensitivity, hollow wave guides about 1 meter long 
are used as absorption cells. A very simplified picture of a microwave spectrometer (without 
frequency or effect modulation) is shown in Fig. 6.1.  
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                    Fig. 6.1  Block diagram of a simple microwave spectrometer. 
 
Frequency modulation of the microwave generator and phase sensitive demodulation of this 
frequency (with respect to the microwave demodulation) allows a reduction in the bandwidth 
of the detection channel and therefore an improvement of the signal/noise ratio. An effect 
modulation is attainable by applying an alternating electric field (50 Hz to 100 kHz, field 
strength of approx 100 V cm−1). By phase sensitive demodulation with this frequency, the 
portions of the signal modulated by the Stark effect are captured, see chapter 6.1.5. 
 

6.1.2 Energy Levels of the Rigid Rotor 

The energy of a body which freely rotates around the axis x, y and z with the angular 
frequencies ωx, ωy, ωz, the moments of inertia Ix, Iy and Iz relative to these axes and the 
angular momentum Lx,y,z = Ix,y,z ωx,y,z is in the classical mechanics 
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In a spherical rotor (tetrahedral or octahedral symmetry of the molecule, e.g. in CH4 or SF6) is 
Ix = Iy = Iz = I. In general is Lx

2 + Ly
2 + Lz

2 = L2. When we move from the classical to the 
quantum mechanical description, L2 is replaced by J(J+1)h2, see chapter 3.1.4, and we get 
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Now J no longer refers to the classical angular momentum but rather the angular momentum 
quantum number J = 0, 1, 2,.... Equation (6.02) defines the constant of rotation B as a 
frequency  
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Levels are often labeled with the rotational term FJ = EJ/hc, 
which has the units of a wave number, instead of the 
energy EJ or the frequency EJ/h. If we want to use the usual 
dimensions of cm−1 for these wave numbers, the numerator 
in equ. (6.03) has to be multiplied by the speed of light c in 
cgs units. 
 
The meaning of the rotational constant B becomes apparent 
when we consider two neighboring rotational transitions 
J−1 → J and J → J+1. If we put this back into equ. (6.02), 
we end up with the transition energies EJ −EJ−1 = 2hBJ and 
EJ+1 −EJ = 2hB(J+1). If we then construct the difference of 
these two solutions, we obtain 2B as the frequency 
difference of neighboring rotational transitions, see Fig. 
6.2. 
 
Starting with equ. (6.01), the symmetric rotor can also be 
described. A symmetric rotor has two equal moments of 
inertia (relative to two axes: Ix = Iy = IB), which are 
different than the moment of inertia of the distinguished 
principal axis (Iz = IA). If IA > IB, the rotor is shaped like a 
pancake (for example C6H6). If IA < IB, it is shaped like a 
cigar (e.g. CH3Cl). The energy values of the Hamiltonian 
are determined in chapter 3.1.4, see equ. (3.35), by 
 

 ERot = 
B

2

2I
h [J(J + 1) − K2] + 

A

2

2I
h K2,   0 ≤ K ≤ J. (6.04) 

 
K is a magnetic quantum number (directional quantum number), see chapter 3.1.4.  
If K = 0, we have a rotational axis which is perpendicular to the symmetry axis of the 
molecule. If K = J, the rotational axis is almost parallel with the symmetry axis. The quotients 
in equ. (6.04) can be replaced by the rotational constants A and B multiplied by the Planck 
constant, analogous to equ. (6.02). When doing this, we must also replace the I in equ. (6.03) 
with IB and IA. The selection rules for the rotational transitions in emission and absorption are 
ΔJ = ±1 and ΔK = 0, but in the rotational Raman spectra for the linear rotor it holds that 
ΔJ = 0, ±2, and finally in the symmetric rotor ΔJ = 0, ±1, ±2 and ΔK = 0. 
 
Equation (6.04) also contains the special case of a linear rotor, which was explained in chapter 
3.1.4 using cyclic boundary conditions. In the linear rotor (e.g. CO2 and HCl), IA = 0 and 
stable axes of rotation are perpendicular to the symmetry axis, from which it follows that 
K = 0. With that we have energy eigenvalues for the spherical rotor, see equ. (6.02). Uglier 
expressions with more quantum numbers are used to describe the asymmetrical rotor and free 
inner rotations in molecules. 
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Fig. 6.2  Rotational energy and 
energy differences 
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6.1.3 Diatomic Rigid Rotor, Specifically HI 

 
The axis of rotation is perpendicular to the bonding axis 
and passes through the centre of mass in a heteropolar 
diatomic molecule with atomic masses m1 and m2. The 
centre of mass is conserved in a molecular rotation. If r =
0 at the centre of mass, and the nuclear distance 
re = r1 + r2, then from the conservation of the centre of 
mass we get m1r1 = m2r2. With r1 = re − r2 and 
r2 = m1re/(m1 + m2), we get for the moment of inertia the 
simple relationship I = re

2mr with the reduced mass  
mr = (m1m2)/(m1 + m2) 
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Fig. 6.3   Diatomic rotator   
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 (6.05) 

 

In HI, the rotational spectrum is composed of equidistant lines separated by 384 GHz for 
small quantum numbers. (In the transitional range between the far infra-red and microwaves, 
the observed spectrum has line separations of 12,8 cm−1.)  From the frequency separation of 
2B = 384 GHz, we get from equ. (6.03) the moment of inertia 
 

 I = 4,37 × 10−47 kg m2 = mrre
2. (6.06) 

 

Iodine has only one isotope with the mass number 127, the reduced mass is therefore 
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The interatomic distance is determined from 
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Measurement of the moment of inertia of a molecule allows 

• the measurement of distances and valence angles if the isotopic composition is known; 

• the determination of the isotopic composition if the interatomic distances are known. 
 

If three different moments of inertia can be determined from the rotational spectra of 
asymmetric polar molecules, we can determine a maximum of three distances and angles. 
That allows complete specification of triatomic non-linear molecules. The use of isotopes  
(e.g. replacement of H with D) increases the number of measurement values. 
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6.1.4 Diatomic Non-Rigid Rotor, Specifically HCl 

As consequence of centrifugal distortion, the interatomic distances can grow with increasing 
rotational frequency, i.e. the constant of rotation B gets smaller as J get larger, see equ. (6.03) 
and equ. (6.05). For an explanation of this effect, let us first consider a harmonic vibration in 
the rotor. With the force constant k and the reduced mass mr, we have for this vibration that 
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 r = re + facosωst. (6.10) 
 

Worthy of note is that although the time average of equ. (6.10) is re, the fact that in rotational 
spectroscopy B ∝ 1/I ∝ 1/r2, we have to average over 1/r2. The determination of the average 
value by integrating over 1/r2 leads to a apparent average distance of re(1 − fa/re)3/4 where  
fa < re. The reduction coefficient is, for example, about 0,74 when fa/re = 1/3. 
 

Setting the centrifugal force of the rotation equal to the displacement force of the vibration 
leads us to 
 

 mrrω2
rot = k(r − re). (6.11) 

 

By using the moment of inertia I = mr r2 and the angular momentum L = Iωrot = mr r2ωrot we 
get from equ. (6.11) 
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The rotational energy is composed of the rigid part L2/2I and the elastic energy k(r − re)2/2, 
which leads to a reduction of the total energy due to the increase in the moment of inertia:  
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By setting r3 equal to re
3 in equ. (6.12), putting this into equ. (6.13), and moving from the 

classical to the quantum mechanical notation [L2 → J(J + 1)h2] we get 
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With term notation analogous to equ. (6.02) we conclude: 
 

 Erot/h = B J(J + 1) − D J2(J + 1)2, (6.15) 
 

in which D is the elastic strain constant of the centrifugal distortion. By comparison of equ. 
(6.15) with equ. (6.14), noting that I = mrre

2, and considering equ. (6.09) and equ. (6.03) we 
get 
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Equ. (6.16) makes two statements: 
• Because D ∝ 1/I3, a large moment of inertia gives a small distortion. 
• Because D ∝ 1/νs

2, a large vibrational force constant also gives a small distortion.  
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Tab. 6.1. Some wave numbers calculated using Erot/hc = B J(J + 1) − D J2(J + 1)2 with  
2B = 20,79 cm−1 and D = 0 (rigid rotor) or for the non-rigid rotor D = 0,0005 cm−1 and D = 0,00038 cm−1 were 
compared to experimental values of gaseous HCl.  
 

Calculations with Transition Experiment 
D = 0 cm−1 D = 0,0005 cm−1 D = 0,00038 cm−1

J = 0 ↔ J = 1 20,79 cm−1 20,79 cm−1 20,79 cm−1 20,79 cm−1 
J = 3 ↔ J = 4 83,03 cm−1 83,16 cm−1 83,03 cm−1 83,06 cm−1 
J = 6 ↔ J = 7 145,03 cm−1 145,53 cm−1 144,84 cm−1 145,01 cm−1 
J = 9 ↔ J = 10 206,38 cm−1 207,90 cm−1 205,9 cm−1 206,38 cm−1 

 
Table 6.1 contains the experimentally determined wave numbers for some rotational 
transitions in HCl gas. Additionally, the values calculated using the rotational constant  
2B = 20,79 cm−1 (experimentally obtained from the transition J = 0 ↔ J = 1) with different 
elastic strain constants are shown. When D = 0,0005 cm−1, we have much better correlation 
than with a rigid rotor (D = 0). The best correlation is attained with D = 0,00038 cm−1. An 
elastic strain constant D ≈ 0,00054 cm−1 is obtained, if we take The from the vibrational 
spectra the vibrational frequency of 2885,9 cm−1 and use equ. (6.16) with 2B = 20,79 cm−1. 
This demonstrates that equ. (6.16), which was derived for a harmonic oscillation, only 
approximately describes the real situation. 
 

6.1.5 The Stark Effect in Rotational Spectra 

The lifting of the degeneration of rotational levels in an external electric field is known as the 
Stark effect. The original phenomenon, discovered in 1913 by Johannes Stark, was the 
splitting of the lines of the atomic hydrogen spectrum, when the hydrogen was in glowing 
canal rays exposed to an external electrostatic field. Since then, the splitting of spectral lines 
in electric fields is collectively referred to as the Stark effect. It is therefore the electric 
analogy to the Zeeman effect, which is used to label all the splittings of spectral lines in 
external magnetic fields. For a linear dependency of the splitting on the strength of the 
external field, a permanent electric dipole moment in the molecule is necessary. In the 
quadratic Stark effect, the external field creates a dipole moment in the molecule. 
 

The measurement of the Stark splitting of the rotational lines is often used to determine 
molecular dipole moments. We will first present the frequency shift of rotational transitions 
caused by the linear Stark effect. 
 
In a rotationally symmetric molecule, the molecule-specific electric dipole moment µ is 
parallel to the symmetry axis and to the angular momentum K with |K| = K h, where K is the 
rotational quantum number used in chapters 3.1.4 and 6.1.2. We now decompose the dipole 
moment µ into a component J along the axis of rotation, and a component perpendicular to 
this axis. The latter is averaged out by quick molecular rotation, so that in the interaction with 
an external static field E only the component µeff of the dipole moment along the axis of 
rotation plays a role, in first approximation. The magnitude of the angular momentum along 
the axis of symmetry is |K| = K h, the magnitude of the angular momentum along the axis of 
rotation is |J| = )1( +JJ  h.  
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With that, the equation  
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+
=

JJ
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follows from the left of Fig. 6.4. 
Fig. 6.4  Angular momentum vectors and the 
decomposition of the molecular dipole 
moment into a component that interacts with 
the electric field. Take note that due to the 
definition of the angular momentum, the 
vector J−K is perpendicular to K. 
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By applying a field E, the component of J aligned with the external field is determined by the 
magnetic (or directional) quantum number MJ = −J,...,+J. From µeff, only the component µE 
acts, since it points in the same direction as the external field E, see the right of Fig. 6.4: 
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In general for the interaction energy, we have W = −µeffE = −|µE||E| and with equ. (6.17) put 
into equ. (6.18) we get with µ = |µ| and E = |E| 
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In a waveguide, the static electric field is applied parallel to the electric wave of the high 
frequency, MJ and K do not change, and we consider the transition J −1 ↔ J. By constructing 
W(J) − W(J − 1) with equ. (6.19), we get a linear Stark shift of the rotational spectral lines 
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By combining K and J, we obtain 2J + 1 values of MJ, thus 2J + 1-fold splitting, from which 
we can determine the dipole moment µ of the molecule, if we know the values K and MJ. 
Our considerations of the rotationally symmetric molecule explain the linear molecule as a 
special case. In linear molecules, K = 0, and a linear Stark effect does not occur. 
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Under the influence of an external field, polarization effects occur in molecules. These cause a 
Stark effect which is proportional to the square of the external electric field strength. In 
general, a quadratic Stark effect is more often seen especially when there is no permanent 
dipole moment. For the special case of rotational spectra of linear polar molecules, we will 
give the quadratic Stark shift for the transitions J −1 ↔ J without derivation: 
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The 2J + 1-fold MJ-splitting depends on the squares of the quantities μ, E and MJ.  
 

6.1.6 The Intensity of the Rotational Lines 

In the classical consideration, we have for the occupation number Ni of state i for N total 
particles the Boltzmann distribution of the form 
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In the denominator, we have the so-called state sum, which must be summed over all states i. 
Degenerate states (more than one eigenvalue has the same energy) have to be counted 
multiple times. The molecular angular momentum vector J has 2J + 1 orientations of different 
energy in an external electric or magnetic field. For example, when J = 1, the angular 
momentum |J| = 2h and MJ = = +h, 0, −h, with different energy, see for example equ. (6.19). 
If no external field is applied, we have 2J + 1-fold degeneracy of the rotational levels, i.e. the 
corresponding energy values have to be counted 2J + 1 times. Because EJ = hB J (J + 1), 
see equ. (6.02), we get as the sum of states for the linear or spherical rotor 
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In equ. (6.23) notice that the first summation i is over J and MJ, but the second summation is 
only over J. The transition from the middle to the right part of the equation is easy to calculate 
yourself by putting the product hB J (J + 1) into EJ, and replacing the sum by the integral 
from J = 0 to J = ∞. With equ. (6.23), we get for the Boltzmann distribution 
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Equation (6.24) is now differentiated with respect to J and the result is set to zero. From that 
we get 
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as the quantum number J with the strongest occupation.  
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In chapter 2.8, we showed that the intensity of an absorption signal is proportional to the 
occupation of the starting state. From that we get the maximal intensity of the rotational line 
with the quantum number given by equation (6.25). This fact can be used to determine the 
temperature in the absorption cell.  

 
Fig. 6.5 Intensity distribution of rotational lines, which are 
plotted as functions of the rotational constant J’, analogous to 
Fig. 6.1. The transitions are from J' − 1 to J'. 
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Fig. 6.5  Intensity of the rotational lines 

 
 
 
 
 
 
 
 
 

6.2 Vibrations of Molecules 

6.2.1 Diatomic Molecules 
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The quantum mechanical 
treatment of the harmonic 
oscillator was the subject of 
chapter 3.1.3. Equation (3.26) 
describes the eigenvalues 
Ev = (v + ½)hω of the oscillation 
frequency ω, and the selection 
rule is Δv = ±1. It was shown in 
chapter 3.1.2. that the potential 
curve for the separation r of two 
atoms is not a symmetric 
function. The simplest 
anharmonic potential is a Morse 
(Phillip McCord Morse) function: Fig. 6.6  The Morse potential of the anharmonic oscillator. 
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The term −De on the right hand side of equ. (6.26) forces the potential energy toward zero  
as r → ∞. The constant a in equ. (6.26) is proportional to the vibrational angular frequency: 
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The Schrödinger equation is solvable for the Morse potential (not calculated here). The 
discrete eigenvalues of the anharmonic oscillator are thus, see Fig. (6.6), 
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In contrast to the harmonic oscillator, transitions in the anharmonic oscillator in which  
Δv = ±2, 3, ... are allowed in addition to those in which Δv = ±1, although the intensity rapidly 
decreases with the term of the harmonic. The spectroscopic dissociation constant De is only 
defined over the potential curve. The chemical dissociation constant D0 corresponds to the 
(negative) energy of state v = 0, which has to added to dissociate a molecule. 
 

For the hydrogen molecule H2 the values are: 
 distance from equilibrium   re = 0,74 Å, 
 chemical dissociation constant D0 = 4,476 eV, 
 spectroscopic dissociation constant De = 4,.746 eV, 
 force constant     k = 520 N m 
 vibrational frequency    ν = 1,24684 × 1014 Hz, 
 wave number     ν~ = 4159,2 cm−1. 
 

In optical experiments, the constants of vibration are rarely given in frequencies ν and 
practically never in angular frequencies ω. The angular frequency ω = 2πν is only appropriate 
for theoretical considerations. The wave number ν~ , which is the most frequently used, is 
defined as: 
 

 
cc π

===
2

1~ ων
λ

ν . (6.29) 

Since the wave number is not given in m−1 but 
rather in cm−1, the speed of light in equ. (6.29) 
must be in cgs units. In a vacuum, c = c0 = 
2,99792458 × 1010 cm−1. There is danger of 
confusion between the wave number ν~ = 1/λ , 
which is the reciprocal of the wave length, 
and the wave number (wave number vector)  
k = 2π/λ, see chapter 2.1. 
 

In Fig. 6.7, the experimentally observed 
vibrational levels for H2 are shown. The solid 
line potential curve is fit to the levels by using 
higher terms, and the dotted line is the Morse 
potential. The Morse potential is only a good 
approximation up to v = 5. But for large 
values of v, the energy goes wrongly to minus 
infinite, see equ. (6.28).  

 

Fig. 6.7 taken from Herzberg: Einführung in die 
Molekülspektroskopie, page 19. 

 
An arbitrarily good fit can be reached using a potential of the form 
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6.2.2 Vibrations in Multi-Atomic Molecules 

A general introduction to vibrations in multi-atomic molecules was presented in chapter 3.3.3. 
Most importantly, normal vibrations and normal coordinates were introduced there. 
A different view of these parameters presents itself by sketching the computational technique 
for normal coordinates and normal vibrations. 
 
Consider the 3N coordinates xi of N atoms, and set the equilibrium position to be at xi = 0, see 
chapter 3.3.3. The Taylor expansion of the potential energy for a displacement of the 
coordinates xi up to the term of second order is 
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Without limiting the generality, we can set U(xi = 0) = 0. Since the potential minimum is in 
the equilibrium position xi = 0, the first term derivative is zero at this location. From equ. 
(6.31), the harmonic approximation follows: 
 

 ( ) ( ) ( )
ji

xx

jijijiji
ji

xx

i xx
U

UxxUxx
xx

U
xU

jiji

∂∂
∂

==
∂∂

∂
=

==

2

0,

,,

2

0,

where
2
1

2
1 . (6.32) 

The derivatives are constructed at the point xi, xj = 0, and from the reversibility of the order of 
the derivatives, it follows that Uij = Uji. If we also assume for each vibrating particle of mass 
mi a kinetic energy Ti = ½ mi (∂xi/∂t)2 = ½ mi , we get as the total energy of all particles 2

ix&
 
 ∑∑

≠

+=+=
ji

jiij
i

ii xxUxmUTE 22
11 2& . (6.33) 

 
With the substitutions jiijijiii mmUUmxx /and =′=′  we conclude from equ. (6.33) 
 
 . (6.34) TT22 xUxxx ′′′+′′=′′′+′= ∑∑

≠

&&&
ji

jiij
i

i xxUxE

 
On the right hand side of equ. (6.34), the summation notation is replaced by matrices, where 

as vectors represent row and column matrices. The matrix U' undergoes a principal 
axes transformation by multiplying it with an appropriate unitary matrix A, so that for A 
U'A−1 = A U'AT we get a matrix with 3N eigenvalues λi on the diagonal (and zero for i ≠ j).   

Tand xx ′′ &&
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Rules of Matrix Calculations: 
The following applies to a quadratic matrix A with the elements Aik = (A)ik : 
The complex conjugate is written as A*, where (A*)ik = (A)ik*. 
The transpose of the matrix is AT or Ã , where (Ã)ik = (A)ki. 
The adjoint of the matrix or hermitian conjugate is A+ or A† , where (A†)ik = (A)ki*.  
In a hermitian or self-adjoint matrix (physical quantities with real eigenvalues),  
A† = A, and it has an orthogonal basis of eigenvectors. 
In a unitary matrix, A† = A−1, where the inverse matrix A−1 is defined by E = AA−1, 
and E is termed the unit matrix. In quantum mechanics and for principal axes 
transformations in general, unitary transformations are used.  

 
The vector q is introduced so that x' = qA and x'T = ATqT hold. With that, the harmonic term 
on the right hand side of equ. (6.34) is replaced: . The inner part  TTT qAUqAxUx ′→′′′
A U'AT is a diagonal matrix with λi eigenvalues. Using summation notation, the result is 
 
 . (6.35) 222 ii

i
i qqE λ+= ∑ &

 
Normal coordinates are represented by qi. The normal frequencies are λi = ωi

2 and ωi. Six 
values (3 translations and 3 rotations) are zero. If more than one ωi has the same value, we 
have degeneration.  
 

6.3 Rotation-Vibration Spectra 

6.3.1 Rotation-Vibration Spectra of Diatomic Molecules 

In gases at low pressure (no Doppler broadening), we can observe a rotational structure to the 
vibrational transitions. By using the rotational constants B, see equations (6.02), (6.03), and 
(3.26), the rotation-vibration energy of a diatomic molecule in the harmonic approximation is 
 
 E(v, J)/h = (v + ½)ν + B J(J + 1). (6.36) 
 
With " we label the ground state and with ' the excited state. Let us now consider the 
transition v ' − v" = Δv = 1 and J' − J" = ΔJ = 0, ±1. If we make the simplified assumption 
that the moment of inertia of the molecule remains constant during the transition between the 
two vibrational states, B in equ. (6.36) is constant. For arbitrary values of v" and variable 
values of J" we get the equation for the transition frequency discovered by Henry Alexandre 
Deslandres in 1885. 
 
 E(v', J')/h − E(v", J")/h = ν + B m, (6.37) 
 
In which for the variable values of J", m = 0 when ΔJ = 0, m is a positive whole number when 
ΔJ = +1, and a negative whole number when ΔJ = −1.  

Spectroscopy  © D. Freude Chapter "Optical Spectroscopy", version June 2006 



Chapter 6, page 13 

 

 

 
 
Fig. 6.8 taken from Atkin 6th ed. 
Fig. 16.40  A high-resolution 
vibration-rotation spectrum of 
HCl. The lines appear in pairs 
because both H35Cl and H37Cl 
contribute. 
 
 

Negative values of m (ΔJ = −1) are responsible for the P-branch, m = 0 (ΔJ = 0) determine the 
Q-branch, and positive values of m (ΔJ = +1) create the R-branch. A vibrational transition 
with a simultaneous rotational transition (Q-branch or ΔJ = 0) occur if a rotation around the 
interatomic axis has a non zero moment of inertia. For diatomic molecules, this is only 
observed in paramagnetic NO. 
 

From Fig. 6.8 we can already see the discrepancy between the predictions of the Deslandres 
equation and reality. Equation (6.36) describes a constant line separation B, but in Fig. 6.8, the 
line separation gets smaller as the wave number increases (energy, frequency). This is due to 
the changing average distance in the transition from v" to v', and therefore I' ≠ I" or B' ≠ B". 
Taking this into consideration, we conclude 
  

 ΔE/h = ν + (B' + B") (J" + 1) + (B' − B") (J" + 1)2 for J" = 0, 1, 2, ... R-branch, 
 ΔE/h = ν + (B' − B")J' + (B' − B")J"2  for J" = 0, 1, 2, ... Q-branch, (6.38) 
 ΔE/h = ν − (B' + B")J"+ (B' − B")J"2 for J" = 1, 2, 3, ... P-branch. 
 

In a diatomic molecule, I' > I", i.e. B' < B", thus the final term is negative. With that it follows 
that in the R-branch the second term is positive, but the third term is negative and whose 
magnitude increases with the square of J". From that we get a maximum or an edge, which 

has a shadow toward Red. In 
the P- and Q-branches, the 
frequency increases with J 
when I' > I". In multiatomic 
molecules, it is possible that  
r'e < r"e, i.e. I' < I" or B' > B". 
In this case, the P-branch has 
an edge which has a shadow 
toward Purple (violet). If the 
two considered vibrational 
states also belong to different 
electron states (additional 
electron transition), the 
moments of inertia differ all 
the more, and it can happen 
that in a diatomic molecule  
I' < I". It can also happen that 
ΔJ = 0 is forbidden, in which 
case the Q-branch does not 
appear. 

 

Fig. 6.9 Fortrat diagram of a CN band 
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6.3.2 Classification of Multiatomic Molecules 

With the inertial tensor of a molecule transformed onto the principal axes, the following 
groupings hold: 
 
 Ix = Iy = Iz spherical top (spinning) molecules, e.g. CH4 
 Ix = Iy ,  Iz = 0 linear molecules, e.g. CO2 

 Ix = Iy ≠ Iz ≠0 symmetric top molecules, e.g. C6H6 

 Ix ≠ Iy ≠ Iz ≠ Ix asymmetric top molecules, e.g. CIFClBr 
 
A top is a solid body fixed at one point. In the molecules of the same name, that point is the 
centre of mass, which remains fixed during a free rotation. 
 
These general groupings of molecules also follows the division of the rotation-vibration 
spectra. The rotational terms are further split by interactions with vibrations, e.g. by Coriolis 
interactions. Further selection rules appear which take into consideration whether the dipole 
moment of the vibrational transition is parallel or perpendicular to the axis of the top. This 
considerably complicates the classification of the spectra of multi-atomic molecules. 
 

6.3.3 Localized Vibrations 

Symmetry considerations allow statements to be made about the allocation of certain 
vibrations to a band found in the IR and/or Raman spectrum. For the determination of the 
normal coordinates, a consideration as trivial as that done for CO2 in chapter 3.3.3 is rarely 
sufficient. Assuming a vibrational model (atomic masses, distances, angles, force constants) 
followed by normal coordinate analysis (chapter 6.2.2), and the final comparison of the 
calculated values to the experimentally measured lines is a very lengthy and involved process, 
which, due to the imprecision of the assumptions and the anharmonic approximation, does not 
necessarily lead to a correct result. Further complications are introduced into the splittings 
mentioned above especially by the presence of harmonics and combined vibrations, even if 
they appear with low intensities. In a few cases, the exchange of atoms or atomic groups (e.g. 
Cl ↔ Br, D ↔ H) in the ordering of bands can help. 
 
An important simplification which has led to the wide usage of IR-spectroscopy is achieved 
by using localized vibrations. These appear if a small coupling exists between the vibrations 
of the atomic groups under consideration and those of the rest of the molecule. The coupling 
is caused by different frequencies, i.e. force constants or masses. Sufficient frequency 
differences exist at 10 %, i.e. because rmk=ω , a difference in the force constants or the 
reduced masses of 20 % is necessary. Figure 6.10 shows a grouping of the localized 
vibrations. Such representations for the bonds in organic chemistry can be used as an aid to 
the classification of IR-bands in the spectra of substances under study. Take note that the 
appearance of a band is a necessary but insufficient condition for the presence of the 
corresponding bond in a substance under study. 
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6.3.4 Influencing the Position of the Characteristic Frequencies 

A coupling of the vibration with the rest of the molecule or other molecules causes a shift in 
the wave number. This can be demonstrated on acetone, in which solvents weaken the C=O 
bond. The following wave numbers were ascertained for the gas or solvent (in parenthesis): 
 
ν~ C=O = 1742 cm−1, 1728 cm−1, 1720 cm−1, 1718 cm−1, 1712 cm−1 
 (gas state) (cyclohexane) (dioxane) (acetone) (bromoform). 
 
A further example of the effect of the position of the characteristic frequencies is the shift of 
the O-H valence vibrations in a water molecule by the creation of a hydrogen bridge bond at 
an adsorption centre in the microcrystalline porous solid body sodium-zeolite. The following 
wave numbers for the O-H bonding vibrations is observed: 

 
3650-3720 cm−1 sharp line of the O−H valence vibration, 
1658-1665 cm−1 line of the H−O−H- bending vibration, 
3200-3400 cm−1 wide line of the O−H valence vibration. 
 
 
Fig. 6.10 scheme for the adsorption of a water molecule in  

dium-zeolite. so
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Fig. 6.11 Localized vibrations. In the schematic representation below, X stands for the atoms C, O, and N 
and Y for C, and N, and H stands for the hydrogen atoms.  
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Taken from R. Borsdorf and M. Scholz, „Spektroskopische Methoden in der organischen Chemie“, Akademie-
Verlag Berlin 1974. 
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6.4 Absorption Spectroscopy in the Visible and Ultra-Violet Range 

Electron spectroscopy is used for arbitrary electron transitions in which the principal quantum 
number changes. The transitions between the highest occupied and lowest unoccupied orbital 
in molecules have energies which range from 1,5 × 105 to 6 × 105 J mol−1. That corresponds to 
the ultraviolet and visible range of the electromagnetic spectrum. 
 
The oldest spectroscopic analysis methods lie in the UV/VIS range. Colours appear through 
the selective absorption of spectral colours, we see the complimentary colour. 
 
The first works of Kirchhoff and Bunsen made the connection between the specific absorption 
or emission of light in a substance (absorption/emission spectra) an the structural properties of 
the substance. This is the basis of spectroscopy. Since the beginning of the last century, the 
connection between the bonding electrons and the UV/VIS spectra has been known.  
 

6.4.1 Classification of the Transitions 

Figure 6.12 demonstrates the creation of bonding and anti-bonding orbitals from s- and p-
electrons, see chapter 3. It is based on the LCAO method for molecules of two identical atoms 
of the 2nd period. The σ orbitals have a rotationally symmetric charge distribution, with 
respect to the molecular bonding axis (z-direction), in π orbitals there is a nodal plane, which 
contains the molecular bonding axis. The anti-bonding orbital is denoted with an asterisk. 
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Fig. 6.12 Creation of molecular orbitals from the s- and  
p-electrons of two identical atoms from the 2nd period. 
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Beside the bonding and antibonding states in the upper shells, there are in general also 
nonbonding states. If the d electrons are involved, there are also δ bonds. For σ-bonds, λ = 0, 
| λ | = 1 in π bonds, and | λ | = 2 in δ bonds, see chapter 3.1.2. 
 

Spectroscopy  © D. Freude Chapter "Optical Spectroscopy", version June 2006 



Chapter 6, page 18 

The orbital energy normally increases in the sequence σ, π, n, π*, σ*. The transitions σ←σ* 
and n←σ* are in the UV-range, e.g. for ethane the σ←σ* transition in a vacuum is in the UV 
at 135 nm. (with respect to the wavelengths λ/nm it holds: infrared <780, red 700, orange 620, 
yellow 580, green 530, blue 470, violet 420, UV <380, quartz-UV<300, vacuum-UV <150.) 
 
The π←π*- and n←π* transitions have lower energies in quartz-UV or for multiply 
conjugated double bonds in the visible range. 11-cis-retinal has six conjugated double bonds 
and absorbs in solution at 380 nm and in connection with protein even in the visible range. In 
the eye, the excited double bonds are rotated by photoabsorption, and 11-trans-retinal is 
created, which then isomerizes. The decay of the molecule sends a nerve impulse to the brain.  

 
 
 
 
Fig. 6.13. The spectral sensitivity of the eye. 
The sensitivity of the S, M and L cones is 
proportional to the spectral absorption of the 
rhodopsins in the cones. Figure from 
Brockhaus Multimedial 2002. 
 
 
 
 
 
 
 
 
 

6.4.2 n←π* Transitions, Specifically in Carbonyl Bonding 

Unsaturated molecules which contain an oxygen or sulfur, have weak bands, e.g. aldehyde 
R−C=O, ketone RR>C=O at λ = 270-300 nm, ε = 1-2 m2/mol. Die Carbonyl-p electrons in the 
ground state occupy the following orbitals (bonding in the z-direction, principal quantum 
number = 2, orbital quantum number l = 1, therefore 2l + 1=3 magnetic (directional) quantum 
numbers x, y and z): 

  
 

σ 
π 
n 
π∗ 
σ∗ 

σ2π2n2 
σ 
π 
n 
π∗ 
σ∗ 

σ2π2n1π∗1 

        Excitation: 
 
 
 

In general it holds for the symmetry properties of the 
orbitals: 

2pz(O) − 2pz(C) → σ 
2px(O) + 2px(C) → π 
2py(O) + 2py(O) → n 

• The type of symmetry of the state is equal to the product of the types of symmetry of 
the individual electrons. 

• The type of symmetry of an electron corresponds to the type of symmetry of the 
orbital of the electron. 

• If two electrons are in the same orbital, their product determines the total symmetry 
type (A1g). Only the outer nonclosed orbitals need therefore be considered.  
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6.4.3 Consideration of the Symmetry Properties of the Ketones, Group C2v 

In the Carbonyl group, with z as the bonding direction and R,C and O in the y-z plane, the π 
and π* molecular orbitals, which are composed of the px atomic orbitals, lie in the x-z plane 
and the n molecular orbital, constructed with the two py atomic orbitals of the oxygen atom, 
lie in the y-z plane. 
 

 
  x 

y 
 z 

 

 
 
type of symmetry / class E C2(z) σ(yz) σ(xz) 
 
 

 

 
+ + 

− − 
O C 

+ 

+ 

− 

− 
C O 

+ 

− 
C O  

π orbital B1 +1 −1 −1 +1 
 
 
π∗ orbital  B1 +1 −1 −1 +1 

 
n orbital  B2 +1 −1 +1 −1 
 

 
The ground state of the carbonyl group has the type A1 × A1 × A1 ≡ A1. 
The excited state σ2π2n1π*1 is of the type A1 × A1 × B2 × B1≡ B2 × B1 ≡A2. 
 
In general, the condition for the existence of a dipole moment of a transition is: 
 

< ground state > × <x or y or z> × < excited state > ≡ A1g 
 

It can be seen from the character table C2v that A2 contains no components of translation. The 
product of the three types is therefore ≠ A1, and the transition is forbidden. Because of the 
partial removal of the symmetry by the overlapping of the atomic vibrations, a weak band can 
still be seen in spite of the prohibition. 
 
The extinction coefficient ε, defined in chapter 2 as log (I0/I)λ = ε c d  
(where c = concentration, d = thickness), is for allowed electron transitions greater than 1000 
m2/mol, for forbidden transtions below 100 m2/mol, as n → π* below 10, for ketones 1...2. 
 

6.4.4 π←π* Transitions, Specifically in Ethylene Bonding 

Substances with isolated π electrons absorb at about 170 nm. If two double bonds in a 
molecule are separated by two or more saturated hydrocarbons,  they are called isolated. 
A stronger interaction between the double bonds gives the following shifts: 
 
>C=C< 174 nm  −C=C−C=C−  220 nm 
−C≡C− 170 nm  −C=C−C=C−C=C− 260 nm 
>C=O  166 nm  −C=C−C=C−C=O 270 nm 
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In ethylene bonding (group D2h) with z as bonding direction and all nuclei in 
the y-z plane, it holds:  

  x 

y 
 z 

 
 
 
symmetry type/class E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz) 

 
+ + 

− − 
C C 

+ 

+ 

− 

− 
C C 

 

 
 
π orbital B3u +1 −1 −1 +1 −1 +1 +1 −1 
 
 
π∗ orbital  B2g +1 −1 +1 −1 +1 −1 +1 −1 

 
z translation B1u +1 +1 −1 −1 −1 −1 +1 +1 

 
It is easy to verify that the following holds: 
 
character (B3u) × character (B2g) × character (B1u) = character (A1g) ≡ (1,1,1,1,1,1,1) 
 
From this product we get of the characters of the starting state, the excited state, and for the  
z-translation the total symmetric type. We are therefore dealing with an allowed transition. 
A strong band (ε = 1700 m2/mol) is observed at 174 nm. Additionally, an excited state with 
π0π*2, thus B2g × B2g can come into being. Since Ag1 has no translation, this band is forbidden 
(ε < 1 m2/mol, λ = 200 nm). 
 

6.5 Franck-Condon Principle 

Transitions from one electron state to another happen so quickly that the slow nuclear 
vibrations of a heavy nucleus cannot follow, i.e. the interatomic distance hardly changes 
during the transition. In absorption, the transition normally moves an electron from the 
vibrational ground state into an excited electron state. In the excited electron state, the 
vibrational states which require no change of the interatomic distance are adopted. From that 
we get the vibrational structure of the electron spectrum. 
 
James Franck explained this vibrational structure semi-classically. Edward Uhler Condon 
found the wave mechanical formulation of the Franck-Condon principle. It corresponds to the 
Born-Oppenheimer approximation formulated by Max Born and Julius Robert Oppenheimer, 
according to which the states of the electrons are independent of the nuclear states. This fact is 
also called the adiabatic approximation, since the assumption is made that the electrons follow 
the nuclei without inertia through their equilibrium states (i.e. adiabatically). 
 
Let us consider the dipole moment of the transition from level 1 to level 2, introduced in 
chapter 2, equ. (2.56): 
 
 , (6.39) M r21 2 1= ∗∫q ψ ψ τ$ d

 
Both states are described by the product of two wave functions each, which characterize the 
vibrational and electron states (neglecting the rotation). With that, ψ1 = ψ1vψ1e and  
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ψ2 = ψ2vψ2e. Additionally, the operator r = rv + re is separated into a sum of two operators, 
which operate on either the wavefunctions of the vibrations or the electrons.  
From that we get the dipole moment of the transition 
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 (6.40) 

 
Because of the orthogonality of the electron wavefunctions, 

( ) ( ) ( )∫ ∗ edee 12 τψψ  is zero, and the sum on the right in equ. (6.40) 
disappears. The same is not true for the sum on the left, since the 
vibrational wavefunctions belong to two different sets of 
functions. The factor ( ) ( ) ( ) ( )∫ ∗  edeeˆe 12 τψψ rq describes the 
dipole moment of the electron transition and goes quadratically 
into the intensity of the spectral line, see equ. (2.93) of chapter 2. 
The square of ( ) ( ) ( )∫ ∗ vd vv 12 τψψ  describes the relative 
excitement of the corresponding vibrational band. It increases 
with increasing overlap of the wavefunctions of the vibration in 
the excited electron state with the vibrational ground state (v = 0) 
of the lower electron state. This fact is demonstrated in Fig. 6.14.  
 

 
 
 
 

 

Fig. 6.14. Overlap of the wave functions for v = 0 in the lower 
and v = 10 in the upper electron level (taken from Atkins 6th ed.)
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