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5 Paramagnetic Electron Resonance 

By splitting the electron ground state in a strong external magnetic field, we get Zeeman 
resonances in the gigahertz range of the electromagnetic spectrum. The observation of these 
spectra is the basis of electron paramagnetic resonance (EPR) spectroscopy, which is also 
known as electron spin resonance (ESR). When Jewgeni Sawoiski first observed in 1944 
electron spin resonance absorption in a copper(II) chloride dihydrate sample submerged in a 
4.76 mT field at 133 MHz, electron paramagnetism had already been known for a long time. 
Otto Stern and Werner Gerlach had already demonstrated it in their famous experiment of 
1921: a collimated beam of silver atoms, which are in the ground state 2S½ at room 
temperature (one 5s electron, the other shells are full or empty), passes parallel to the edge of 
the wedge-shaped pole shoe of an electromagnet, so that the magnetic field and its gradient 
are aligned parallel (z-axis). The atomic beam travels perpendicular to this direction. A 
homogenous magnetic field only affects the orientation of microscopic magnetic moments µ, 
see chapter 4.1. The inhomogeneous magnetic field, however, applies a force in the z 
direction 
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which diverts the atomic beam in this direction. From equ.(5.01), we get maximal deflection 
with opposite sign for microscopic magnetic moments in the z and –z-directions.  
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Fig. 5.1 Stern-Gerlach Experiment. The cross section of the magnet, and the 
beam of silver atoms coming from the gas reservoir.  The beam is collimated 
by masks and split in the inhomogeneous magnetic field. The detector was a 
cooled glass plate to which the silver atoms stuck. The spots were seen after 
chemical development. 
 
 
 
 

According to classical laws, we should observe deflection in the direction of the gradient of 
the magnetic field for random orientations of μ (except for perpendicular orientation of the 
dipole to the external field). In applying the inhomogeneous magnetic field, the cross section 
of the atomic beam was not even approximately continuous. Two spots instead of one were 
seen along the z axis. Two conclusions could be drawn from the experiment:  

1) the existence of the magnetic moment of the electrons (whose connection to the spin of the 
electrons was first made in 1925 by Samuel Abraham Goudsmit and George Eugene 
Uhlenbeck), and  

2) the proof of two preferred directions of the magnetic moment, which were later shown in 
quantum mechanics to be the magnetic quantization of the electron spins in an external field.  

The Stern-Gerlach experiment was a major influence in the development of modern physics. 
It created a basis for the high frequency spectroscopic procedure used in the study of 
paramagnetic substances. In 1938, Isodor Isaak Rabi developed molecular beam resonance. 
EPR and NMR followed. NMR, treated in the previous chapter, is based on nuclear 
paramagnetism, and EPR is based on electron paramagnetism. 
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5.1 Electron Paramagnetism 

A material is called paramagnetic, if it has no macroscopic magnetic moment in the absence 
of an external magnetic field, but in a magnetic field has one which points in the direction of 
the field. This can be understood by imagining that the stochastically oriented microscopic 
magnetic dipole moments are aligned by the external field. Thus, for the occurence of electron 
paramagnetism, an atomic, ionic, or molecular magnetic moment is necessary. The existence 
of such a magnetic moment is the same as the existence of non-filled electron shells or the 
existence of unpaired electrons. Paired electrons have the same quantum numbers n, l, m, but 
opposite spin quantum numbers s = +½ and s = −½. In atoms or molecules with only saturated 
electron shells, all electrons are paired, i.e. the resulting orbit and spin moments are zero. 
Nevertheless, such particles can often be examined with EPR if they are put in a paramagnetic 
ground state (e.g. creation of free radicals or triplet states) by, for example, irradiation.  
 

EPR experiments concentrate on the following substances: 
a) Free radicals in solid bodies, liquids, or gases, which, according to definition, are an 

atom, molecule, or ion with an unpaired electron, e.g. CH3. (The types mentioned later 
are excluded from the definition of a free radical.) 

b) The ions of the transition metals, belonging to the groups 3d, 4d, 5d, 4f and 5f of the 
periodic table. These include more than half of the elements of the known periodic 
table. The palette of various positive and negative ions contains up to 7 unpaired 
electrons. 

In comparatively few experiments, EPR is also used to study the following substances: 
c) Solid bodies with defects. The most popular local point imperfection is the F-center 

which causes color effects. It is caused by an electron in an anion defect. 
d) Ions with a non bonding s electron (localized 2S½ state), e.g. Ga2+. 
e) Systems with more than one unpaired electron except for those of point b). These 

include on the one hand systems in the triplet state, in which a strong interaction 
between the two unpaired electrons usually appears in an excited state, e.g. irradiated 
naphtaline. Bi-radicals, which show a weak interaction between the unpaired electrons 
and are therefore acting like two weakly interacting free radicals. 

f) Atom with non-filled electron shells, e.g. atomic hydrogen or atomic nitrogen and 
molecules with unpaired electrons, e.g. NO. 

g) Metals and semiconductors, which have unpaired electrons in their conduction bands. 
 

It cannot, however, be expected that EPR experiments can be conducted on all the above 
substances in every case. A significant difference between NMR and EPR is just that: a strong 
influence of the surroundings on the orbital motion and through L-S-coupling on the electron 
spins occurs in condensed material as a result of the strong coupling of the orbital magnetism 
to the surroundings. Thus the gyromagnetic ratio strongly depends on the environment of the 
paramagnetic ion. This is not true in NMR, where the resonance position only has a relatively 
weak dependency on interactions.  
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5.2 The g-Factor and the Zeeman Splitting of Optical Spectra 

In EPR, the most important parameter for the description of the spin system is the g factor. 
Before we define it, we will first briefly turn to orbital and spin magnetism, in which we will 
go from a classical to a quantum mechanical description. 
 
An electron orbiting at radius r with the angular frequency ω creates a current I = −eω/2π 
where the magnitude of the elementary charge e = 1,602 × 10−19 C. In general, the magnetic 
moment of a current I, which encloses the surface A, is µ = IA. With A = r2π, µ = −½ e ω r2. 
With the angular momentum L = me r2 ω (electron mass me = 9,109 × 10−31 kg), we get an 
orbital magnetism which depends on the angular momentum L: 
 

 µL = −
e
m2 e

L . (5.02) 

 
For spin magnetism, we assume a rotating sphere of mass me and charge −e (the axis of 
rotation goes through the center of mass). We divide this sphere into infinitesimal volume 
elements, in which the ratio of segment charge through segment mass is independent of 
segment size. We then perform for each segment the same procedure that we used for an 
electron in a circular orbit and add all their contributions to the dipole moment. We get a 
magnetic moment dependent on the electron spin S, analogous to equ.(5.02):  
 

 µS = −
e
m2 e

S , (5.03) 

 
in which S is the spin of the electron. 
 
In analogy to NMR, see equations (4.01) to (4.03), because of the quantization of the angular 
momentum, we need the orbital angular momentum quantum number l and the spin quantum 
number s for the magnitude. 
 

 L = +h l l( 1)    and   ( )S = +h s s 1 . (5.04) 
 
The components in the direction of the external magnetic field in the z-direction are 
 
 Lz = lz h ≡ ml h ≡ m h   and   Sz = msh ≡ s h. (5.05) 
 
There are 2l+1 magnetic quantum numbers for the orbital magnetism 
 
 ml ≡ m = −l,−l +1, ..., l−1, l (5.06) 
 
and only two magnetic quantum numbers for electron spin magnetism 
 
 ms ≡ s = −½, +½, (5.07) 
 
in which the use of s in both the electron spin quantum +½ and its magnetic quantum numbers 
±½ could lead to confusion. 
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If we consider the z-component of the magnetic moment in equ.(5.02) and use h, which is the 
smallest non-zero value of the angular momentum Lz from equ.(5.06), we get the Bohr 
magneton as the elementary unit of magnetic orbital momentum in an external magnetic field.  
 

 µB = −
e
m2

9 274 10 24

e

2Jm
Vs

h = ⋅ −, . (5.08) 
 

Based on the Bohr magneton, we will now introduce the g factor for an arbitrary magnetic 
quantum number m as: 
 

 ( )μ = g m mμB 1+ . (5.09) 
 

In the following, we will use small letters for individual electrons and capital letters for 
multiple electrons. It follows directly from the comparison of equ.(5.09) with equ.(5.02) and 
equ.(5.04) that gL = 1 for orbital magnetism. This has been experimentally demonstrated with 
an accuracy of 10−4.  Equations (5.03), (5.04) and (5.09) give us a g-factor that does not 
coincide with the experimental results for a free electron. If we use ½h for the electron spin S 
in equ.(5.06) and (5.07), we already have a discrepancy with the experimental fact that the 
intrinsic magnetic moment of the electron is a whole Bohr magneton, thus approximately the 
same as the one belonging to the orbital angular momentum quantum number l = 1. 
Apparently the classical calculation, so successful in the case of orbital magnetism, fails to 
yield the correct results when applied to spin magnetism. This failure of the classical model is 
called the magnetic anomaly of the free electron. The correct theory was discovered by Paul 
Adrien Maurice Dirac in 1928 with his relativistic quantum mechanical description of the 
electron. The g-factor of the free electron is ge = 2,002319304386(20).  
 

As mentioned at the beginning of the fourth chapter, magnetic resonance is related to the 
Zeeman effect, that is, on transitions between states that come into being through splitting in a 
magnetic field (usually the ground state). We will briefly explain what is meant by the normal 
and anomalous Zeeman effect in optical spectroscopy. The normal Zeeman effect appears in 
singlet states in which the total spin S = 0. It holds that J = L, all states are split 2L+1 times, 
and the distance between neighboring levels only depends on the external magnetic field. The 
selection rule for the change in the magnetic quantum number M in a transition is ΔM = 0, ±1. 
From that we get three lines in optical transitions with ΔL = 1, the normal Zeeman triplet. The 
splitting known for historical reasons as the anomalous Zeeman effect refers to the splitting of 
non singlet atoms. The Russel Saunders coupling is used for the addition of total orbital 
angular momentum and total spin: J = L + S. The magnetic moments µL and µS point in the 
direction of L and S, according to equations (5.02) and (5.03). Because of the different values 
of gL and ge, µJ is no longer parallel J, see Fig. 5.2. 
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Fig. 5.2 Vector diagram for the anomalous Zeeman effect. Due to L-S-
coupling, J = L + S. The magnetic moments µL and µS are parallel to 
their angular momenta, and add to MJ, which is not parallel to J. The 

quantity μ J  used in equations (5.10) to (5.13) is not the magnitude of 
MJ but its projection onto the J-axis. 
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From equ.(5.09) we get the magnitudes of the magnetic moments: 
 
 ( ) ( ) ( ).1,1,1 BJJBeSBLL +=+=+= JJgSSgLLg μμμ μμμ  (5.10) 
 
The resulting total angular momentum J is constant in time. L and S precess around J, so that 
only the components of their magnetic moments parallel to J have an effect. From this it 
follows that 

 ( ) ( ) ( ) ( )JS,JL, cos1cos1 BeBLJ +++= SSgLLg μμμ . (5.11) 
 
With the aid of the cosine law, we get an angle between L and S and S and J of 
 

 ( ) ( )
JS

LJS
JS,

JL
SJL

JL,
2

cos  and 
2

cos
222222 −+

=
−+

= . (5.12) 

 
With L = +h L L( 1) , see equ.(5.04) and the corresponding equations for S and J we get 
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( )
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e L e L=
+ + + + − + −

+
μ

J J g g S S L L g g

J J

1 1 1
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. (5.13) 

 
If we connect equ.(5.11) with the lower line in equ.(5.10) and also set 2gL = ge = 2, we get the 
factor named after Alfred Landé: 
 

 
( ) ( ) ( )

( )g
J J S S L L

J JJ =
+ + + − +

+
3 1 1

2 1
1

, (5.14) 

 
He derived the factor using Bohr-Sommerfeld quantum mechanics and therefore used J 2 
instead of J(J+1) etc.. The g factor for the anomalous Zeeman effect is gJ. If strong magnetic 
fields disturb the L-S coupling, L and S precess directly around the external magnetic field. 
As a consequence of this effect named after Friedrich Paschen and Ernst Back, the simple 
splitting associated with the normal Zeeman effect are again observed in optical transitions.  
 
With that we return to EPR. In pure spin magnetism we expect ge = 2,023, and this is truly 
observed in free radicals with an error of less than 10 %. In the transition metallic ions, the g 
factor can be negative in some cases, and can reach positive values of g ≈ 4. In chapter 5.4 we 
will return to this in connection with the effective Hamiltonian. 
 

5.3 Energy Splitting of the Ground State 

We will now consider a special example, the Cr3+ ion, in which the shells 1s, 2s, 2p, 3s and 3p 
are fully occupied, but the shell 3d only has three electrons (5 in a neutral atom) and 4s is the 
first empty shell (1 electron in the neutral atom). Figure 5.3 shows a schematic representation 
of the splitting of the ground state. For the sake of simplicity, the figure does not consider two 
physical realities: the splitting in the electric field of neighboring ions (ligands) is orders of 
magnitude greater than that in the B0 field, and in the crossing of the levels with increasing B0, 
level repulsion is not considered.  
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In the ground state of a non interacting ion, we have from the Hund rule L = 3, S = 3/2 and 
J = 3/2. The term symbol is 4F3/2. The orbital angular momentum has 7 fold degeneracy, the 
spin 4 fold. In other words: the seven possibilities for L and four possibilities for S have the 
same energy. If the d electrons interact with the electric field of the ions in the vicinity (or 
with the crystal field), the ground state 4F3/2 is split. The orbitals of the d electrons are 
arranged in the symmetry types of point groups (irreducible representations, see chapter 3), 
which describe the symmetry of the Ligand field. In octahedral symmetry, this is the cubic 
point group Oh, in which the d electrons can occupy the orbitals A2g, T2g and T1g, which, 
compared to the free ion, results in a reduction or increase in energy. 
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Fig. 5.3 Splitting of the 
Cr3+-ground state of the 
ion in a cation defect, 
e.g. in AlCl3·6H2O.  
 
 

For the Cr3+ ion in a ligand field with octahedral symmetry, the lowest level A2g has no 
further orbital degeneration, and ML = 0. Therefore, we expect that J = S and g = 2,0023. (For 
Cr3+ in aluminum defects in an AlCl3×6H2O-single crystal, experimental measurements show 
that g = 1,977.) If, however, there is an additional weak field with lower symmetry, e.g. axial 
symmetry, this influence together with a quadratic interaction relative to the electron spins 
leads to further splitting of the 4A2g levels (4 refers to the spin degeneracy, A2g to the 
symmetry group). This so-called zero field splitting creates two doubly degenerate states with 
MJ = ±1/2 and MJ = ±3/2 and energy difference δ. The spin degeneracy is removed by the 
application of an external magnetic field. The energy separation is ΔE = MS gS µB Bz. Without 
zero field splitting, the energy difference for every two electron transitions with ΔMS = ±1 
would be the same, i.e. there would only be one line in the spectrum when taking into account 
the selection rule ΔMS = ±1. When δ ≠ 0 we get the fine structure of the EPR spectrum (see 
the insert at the upper right of diag.3.5). It can be observed for S > ½ if the ligand field 
symmetry differs from a pure cubic symmetry (primitive cubic, tetrahedral, or octahedral), 
and δ < gS µB Bz, i.e. the energy of the zero field splitting is smaller than the Zeeman energy.  
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The splitting becomes anisotropic for zero field splitting smaller than the Zeeman energy and 
the resonant position depends on the orientation of the ligand field in the external magnetic 
field. This causes broadening of the resonance line as a result of the powder pattern. This 
pattern appears in non-crystalline solids with so many particles that all orientations of a 
principal axis system appear with equal probability. In single crystals, the spectra are 
dependent on the orientation. Figure 5.4 shows such angle dependency (the data is taken from 
G. Emch, R. Lacroix, and Helv. Phys. Acta 33 (1960) 745). To measure the spectrum, the 
sample is connected in such a way that it can be rotated about an axis (if possible a principle 
axis of the crystal system). 
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Fig. 5.4 Angle dependency of the zero field 
splitting of EPR on the Cr3+ ion in a cation 
defect in an AlCl3·6H2O single crystal. After 
Emch and Lacroix, reference in the text. 
 
 
 
 
 
 

The most important splitting in an EPR spectrum is the hyper fine structure (HFS). The 
principal isotropic part of this interaction is caused by Fermi contact interaction of the charge 
density of s-orbitals at the nucleus with the nuclear spin. It was calculated by Enrico Fermi 
with good correlation to experiment. (p and d-orbitals have no charge density in the nucleus, 
see chapter 3.1.1). The christening as hyper fine interaction came from the analogy to splitting 
caused by electron-nuclear interactions in atomic spectra. An anisotropic hyper fine structure, 
only observable in solid state spectra, results from the interaction of the nuclear spin with a 
non-spherical electron orbital, e.g. a p-electron. It is analogous to dipolar splitting in NMR. 
Hyper fine splitting can be explained by a local field that creates the nuclear spin at the 
location of the electron. The EPR line is split into a doublet when I = ½ with mI = ±½: 
 
 BLocal = B0 + a mI. (5.15) 
 

mI = ±½
mS = ±½

 a 

 

Energy 

EPR Absorption Spectrum

 B0

mS = +½, mI = −½,  E = +½ gµB (B0 − a/2) 

mS = +½, mI = +½,  E = +½ gµB (B0 + a/2) 

mS = −½, mI = −½,  E = −½ gµB (B0 − a/2)

mS = −½, mI = +½,  E = −½ gµB (B0 + a/2) 

 
 
 
 
 
Fig. 5.5 The hyper fine interaction 
between an electron spin S = ½ and a 
nuclear spin I = ½. The dotted line 
shows the splitting of the electron 
spin energy level in an external 
magnetic field without hyper fine 
interaction. 
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The hyper fine coupling constant a is written here in units of Tesla. It is also given in Hertz. 
The electron-nuclear interaction of the s-orbitals leads to isotropic coupling constants. The p-
orbitals in solid bodies lead to anisotropic coupling constants, which are described by a tensor 
T. Coupling constants for some nuclei and orbitals localized at those nuclei: 1H ↔ 1s: 50 mT, 
2H ↔ 1s: 8 mT, 14N ↔ 2s: 55 mT, 14N ↔ 2p: 5 mT, 19F ↔ 2s: 1720 mT, 19F ↔ 2p: 108 mT. 

 
  
 
Fig. 5.6 Hyper fine splitting (above) and 
intensity distributions (below) for two 
radicals. Left: radical composed of one 
nucleus with I = 1 (z. B. 14N) and two 
equivalent nuclei with I = ½ (e.g. 1H). 
Right: radical composed of two 
equivalent nuclei with I = 1 (14N or 2H).  
 
 

 
For the nuclear spin I > ½ and multiple interacting nuclei, we get many splittings, see diag. 
5.6. The splitting with n equivalent interacting spin ½ nuclei causes 2n + 1 equidistant lines, 
whose intensity relationships correspond to Pascal’s triangle from diag.4.13. In the Benzene 
radical anion, C6H6

−, the un-paired electron has equal probability of being found at all 6 
carbon nuclei (12C has no nuclear spin), which are each in the neighborhood of a spin ½ 
hydrogen nucleus. The EPR signal is therefore a sextet with intensity distribution 
1:6:15:20:15:6:1, see diag.4.13. The experimentally determined coupling constant is 
0,375 mT. Evidence that the coupling constant corresponds to the density of the unpaired 
electrons in the atom with the interacting nuclear spin is found in the following: if we 
multiply the measured 0.375 mT by six (the number of nuclei over which the unpaired 
electron in the benzene radical anion is distributed), we get 2,25 mT. This is in good 
agreement with the value 2,3 mT for the π radical CH3, in which the spin density of the 
unpaired π electron is located entirely at one carbon atom. 
 
It is necessary here to add an explanation of why aromatic radicals display hyper fine splitting 
in liquids. Dipolar interactions are averaged out in a liquid, and π electrons have no charge 
density at the nucleus. The hyper fine splitting in aromatic radicals can, however, be 
explained by a polarization mechanism similar to J coupling in NMR, see chapter 4.5. The 
role of the anti-parallel electrons called for by Pauli’s principle is taken by two σ electrons. 
One of these interacts with the 1H nuclear spin, the other with the unpaired π electron at the 
carbon atom.  
 
We speak of a super hyper fine splitting in the EPR spectrum when the electron spin interacts 
with the nuclear spin of a neighboring atom.  
 

5.4 Spin Hamiltonian 

For the spin Hamiltonian, we have to introduce a few basic physical terms. The time 
independent equation for the determination of the wave function ψ of a system, named after 
Erwin Schrödinger who found it in 1926 is 
 
 Hψ = Eψ. (5.16) 
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Although the energy on the right side of the equation can be though of as a numerical factor 
(and an observable eigenvalue of the quantum mechanical system), the left side has an 
operator. The operator contains a procedure for mathematical operators that are to be applied 
to the wave function. For example, the procedure contained in the operator for a non-
interacting particle of mass m, moving in the x direction through a potential V, is a double 
differentiation of the wave function ψ : 
 

 H = −
h 2

22m
+

x
V

d
d

2

. (5.17) 
 

This fundamental operator of quantum mechanics H is named after William Rowan Hamilton, 
who put classical mechanics in a form which served as a basis for quantum mechanics 100 
years later. The operator is a matrix, when related to spin variables. For the sake of simplicity, 
we will not use the hat often seen on operators, including the hamiltonian.  
 

It is very unpleasant to describe a system with many degrees of freedom through a complete 
hamiltonian, whose energy eigenvalues determine the locations of all possible energy levels. 
Even for a simple atom whose nucleus is in the ground state, the contributions from the kinetic 
energy of the electrons, orbital energy, interaction energy between the electron spin and 
nuclear spin, nuclear Zeeman energy, and NMR interactions have to be taken into account. 
 

The orders of magnitude of a few differences between corresponding eigenvalues are  
 Orbital energy > 104 cm−1, 
 Energy splitting in ligand fields 102 - 104 cm−1, 
 Spin-orbit coupling for the atoms B:10, C:28, F:271, Cl:440 und Br: 1842 cm−1, 
 Electron-Zeeman transitions in X and Q-Band spectrometer 0,3 bzw.1 cm−1, 
 Spin-Spin coupling (Zero field splitting) for triplet ground state molecules ≈1 cm−1, 
 Electron spin – nuclear spin coupling (HFS) < 10−1 cm−1, 
 Zeeman transitions of 1H nuclear spins in a field B0 = 0,7 T 10−3 cm−1. 
 

The representation of energies in cm−1 (compare to Fig. 1.3) is often seen in EPR, even 
though the axes of the spectrum are often labeled with Tesla or the relative unit of the g-
factor. The comparison of the above energies shows that the use of a complete hamiltonian 
would be unnecessary for the solution of the eigenvalue problem in EPR.  A. Abragam and 
M.H.L. Pryce, Proc. Royal Soc. A205 (1951) 135, derived a spin hamiltonian which only 
takes the spin variables into account. It is constructed so that its eigenvalues correspond with 
the lowest level of the complete hamiltonian. With the Planck constant h, we get the spin 
hamiltonian for a Cartesian coordinate system x, y, z of the paramagnetic center and an axial 
crystal symmetry of the species (the symmetry axis z is the principal axis direction for the g, 
D, and T tensor): 
 

H = g⎟ ⎜μBBzSz + g⊥μB(BxSx + BySy) + D[Sz
2 − (1/3) S(S + 1)] + hT⎟ ⎜ IzSz + hT⊥(IxSx + IySy). (5.18) 

 

Since we connected the Cartesian coordinate system to the crystal sample through equ.(5.18), 
no rule exists for the external magnetic field B and the high frequency input field 
perpendicular to it. The orientation of B can be arbitrarily set by rotating the sample. In 
equ.(5.18), an effective electron spin operator S can have an effect which is smaller than that 
shown by the multiplicity of the ground state. The first two terms on the right side of 
equ.(5.18) contain anisotropic effects of higher states from the spin-orbit coupling in addition 
to the scalar value ge = 2,0023. The magnitude of these effects is different along an axis 
parallel g⎟ ⎜ and perpendicular g⊥ to the z-axis. D refers to the fine structure term which leads 
to zero field splitting. The tensor of the hyper fine coupling constant T can also assume 
different values for the electron-nuclear interaction parallel and perpendicular to the 
symmetry axis. The quadrupole and nuclear Zeeman terms belonging to the spin Hamiltonian 
have been left out of equ.(5.18) for the sake of simplicity. 
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If we only consider radicals in liquid samples, then the anisotropic parts are averaged out. We 
only need to deal with scalar values of g and T, and the fine structures disappear since D is 
now described by a zero-trace tensor. S = ½, and the isotropic g-factor differs from 2 by 
hardly more than 5%. 
 

5.5 Experimental Detection of EPR 

Although the first EPR experiment was done at 133 MHz, the frequencies currently in use 
range from 1 to 100 GHz. The most common EPR frequency is 9,5 GHz in the X-Band.  
In special applications, experiments are sometimes carried out in the S band (1,5-4 GHz) and 
C band (4-6 GHz). EPR spectrometers also operate in the K (11-36 GHz) and Q bands (36-
46 GHz), which follow the X band (6-11 GHz). High-field EPR is conducted in the W band 
(55-100 GHz) at around 95 GHz and with a magnetic field of approx. 3,4 T. Attempts are 
being made with available super-conducting magnets at 15 T to move into the sub-millimeter 
range. As in NMR, the move to higher frequencies increases the spectral resolution.  
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Fig. 5.7 Basic construction of an X band EPR spectrometer with 100 kHz field modulation and phase sensitive 
detection (PSD). Between the klystron, resonator (R) and detector, a microwave frequency of about 10 GHz is 
transferred through square wave guides (cross-section 12,7×25,4 mm). Between the resonator and the two pole 
shoes of the magnet are modulation coils, which overlay a 100 kHz oscillating magnetic field onto the sample. 
 
In the EPR laboratories there are still more continuous wave (cw) spectrometers than pulse 
spectrometers. The former work with the constant, continuously input microwave frequency 
of a klystron and the time-variable external magnetic field of an electromagnet, see Fig. 4.3. 
In the study of free radicals (g ≈ 2) at 9,5 GHz in the X band, magnetic induction of about 
0,34 T is necessary. For the observation of a larger range of the g factor, magnets with an 
iron-core for a correspondingly larger field strength range are used. The spectrometer is 
composed of a frequency and power stabilized klystron sender, followed by an so-called 
insulator to decouple the sender. The attenuator which follows is not shown in Fig. 5.7.  
The circulator conducts the sender power to the sample, the power reflected to the detector, 
and the power reflected from the detector to the fourth arm, which serves as absorber.  
The resonator is located in the homogenous part of the magnetic field, contains the sample, 
and is constructed to heat the sample, and sometimes rotate single crystal samples.  
The detector is a microwave diode, which only rectifies the microwave frequency while 
leaving the modulation signal (100 kHz) untouched. 
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Continuous wave -EPR uses differential scanning (like broad-band cw-NMR, which is rarely 
seen today). The magnet power supply contains a setup to sweep a certain field range, so that 
a linearly time-varied external magnetic field B0 = Binitial + const.⋅ t results. The external field 
is overlaid with an extra magnetic field with a frequency of, for example, 100 kHz, created by 
a pair of coils located between the pole shoes and the resonator. The amplitude of this extra 
field, BModulation, should be as large as possible for good signal-to-noise ratio, but smaller than 
the line width of the EPR signal to prevent false signals. The modulation frequency should 
also be less than the line width, since it causes side bands at a distance of the modulation 
frequency. 
 

With that we get the complete time dependency of the external magnetic field: 
 

 B0 = Binitial + const.· t + Bmodulation· sin (2πνModulation·t). (5.19) 
 

 
Fig. 5.8 Differential scanning and 
phase sensitive detection. 
 
 
Figure 5.8 shows how a 
Gaussian line defined as 
f(B) = exp {−(B − α)/β} is 
differentially scanned. The 
lower left of Fig. 5.8 shows 
the time dependency of the 
magnetic field from 
equ.(5.19). The field B0 scans 
the absorption signal like a 
characteristic curve. The 
dotted lines indicate the 

passage of half a modulation period in the time domain. The steeper the slope (first 
derivative) of the absorption signal, the larger is the energy difference between two peeks of 
the modulation field. At the maximum of the absorption curve, this difference is zero. During 
passage through the maximum, the phase of the oscillating signal drawn lightly in the right 
part of Fig. 5.8 with the frequency νmodulation jumps by 180°. The oscillating signal is applied 
to the input of the phase sensitive detector (look in amplifier), and the phase sensitive detected 
signal is shown as a thick stretched-out line on the right side of Fig. 5.8. 
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To explain the phase sensitive detection, we again refer to Fig. 5.7. The 100 kHz signal 
coming from the detector is passed through a small-band amplifier and fed into the phase 
sensitive detector. This has another input, to which the 100 kHz reference frequency of the 
generator is applied, the same generator which drives the modulation coils. There is also a 
phase shifter not shown which assures that the signal and reference frequencies have the same 
(or opposite) phase. The phase sensitive detector is a multiplier followed by a low pass filter. 
The multiplier multiplies the signal function to the reference function (pure sine wave) and 
integrates with the help of the low-pass filter over an adjustable time period of a few seconds. 
In a mathematical sense, the operation of a phase sensitive detection is equivalent to the 
convolution of functions. From trigonometric identities we know that the product of two sinus 
function leads to two terms which contain the difference and sum of the arguments of the 
functions. The sum is suppressed by the low-pass filter and the phase difference plays an 
important role in the difference. The phase sensitive rectifier therefore creates the thick line 
from the thin one in Fig. 5.8. This curve corresponds exactly to the derivative of the 
absorption curve on the left side, if the modulation amplitude and time constant were 
sufficiently small to prevent signal falsification. 
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In all cw-EPR experiments, therefore, the differentially scanned signal is shown instead of the 
absorption curve. The signal shown corresponds to the first derivative of the absorption 
signal. (In Figs. 5.3 and 5.5, the absorption signals were shown for the sake of simplicity.) 
In a differentially scanned signal, structures are easier to recognize. There is, however, the 
significant disadvantage that the surface under the signal is not proportional to the 
concentration of the observed species. The most important advantage of the differential 
scanning of the signal is the improvement of the signal-to-noise ratio. With this procedure, the 
electronic bandwidth of the detection setup can be greatly reduced (< 1 Hz), thanks to which 
the noise, which is proportional to the square root of the band width (see chapter 4.3) is 
reduced accordingly. 
 
5.6 Pulse Measurement in Electron Spin Resonance 

Pulse electron spin resonance spectrometers work in a fixed magnetic field, as in NMR. The 
highest achievable microwave power is applied in one or multiple pulses to rotate the 
macroscopic magnetization through the angle π/2 or π, and plots the phase sensitive rectified 
signal as a function of time. It is advisable to review the previous lectures on NMR pulse 
measurements in chapter 4.6 to aid in the understanding of the EPR pulse measurement 
method dealt with here only briefly. Pulse EPR spectrometers are, for technical reasons, 
limited in their application to very wide lines (which are often seen in transition metals). 
Two conditions of high frequency spectroscopy, which in NMR are generally easy to fulfill, 
cause problems in EPR. First of all, the microwave field strength has to be so strong, that the 
π/2 pulse of the entire spectrum to be observed is excited. A square pulse of length τ has a 
bandwidth of around 1/τ. If the spectral width is 100 MHz, the pulse should not be longer 
than 10 ns. Achievable widths of π/2 pulses range from 10-200 ns. The second problem is that 
the ring down of the pulse in the resonator and the overloading of the receiver electronics by 
the transmitter pulse that causes dead time in the receiver, in which no signal can be detected. 
This dead time should be shorter than the transversal relaxation time, which determines the 
free induction decay. A rough approximation of the transversal relaxation time from the 
reciprocal line width, see equ.(4.36), shows that this condition alone leads to a dead time of 
about 50 ns for a spectral width on the order of 10 MHz. This condition is less limiting, 
however, if we observe a Hahn-echo at time 2τ with a Hahn pulse train π/2, τ, π, instead of 
the free induction decay (measurement begins immediately after the pulse) see chapter 4.6. 
 

Despite the technical limitations, pulse electron spin resonance is applied in many areas. The 
simplest method, the Fourier transformation method (FT EPR) works with a single π/2 pulse 
and plots the FID directly after the pulse. This method is particularly advantageous in the 
study of radicals, if optical radical creation is synchronized with the pulse experiment. 
Electron spin echoes are used in pulse EPR spectroscopy in many ways, similar to NMR, see 
chapter 4.6. The nuclear modulation effect in an EPR spectrum can be studied by varying the 
delay between the pulses of the echo pulse group and plotting the intensity of the echoes 
modulated by the electron-nuclear interaction (echo envelope) as a function of the pulse delay 
τ. This process is called ESEEM (Electron Spin Echo Envelope Modulation) and can also be 
be used in the study of relatively broad lines. The equation that describes the echo envelope 
contains cosine terms with arguments ωiτ, where ωi corresponds to the nuclear resonance 
frequencies and their sums and differences. The effect only appears in solid bodies having an 
anisotropic electron-nuclear interaction. A few multi-dimensional methods of NMR have 
been applied to EPR. Such experiments are based on at least two independent variable times, 
in the simplest case the variable time τ1 between two pulses and the variable time τ2 for the 
scanning of the signal after the second pulse. Spectra are sequentially recorded with 
increasing pulse delay. The first Fourier transformation is performed relative to the scanning 
timeτ2 and gives an ω2 representation, the second is performed relative to the pulse delay τ1 
and gives an ω1 representation. As in nuclear resonance, the measurement of relaxation times 
with the cw method is hardly possible, and can only be achieved by pulse measurement.  
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5.7 ENDOR 

Electron Nuclear DOuble Resonance detects nuclear spin transitions through the electron 
spin signal. An ENDOR spectrum has much higher resolution at greatly reduced detection 
sensitivity compared to a typical EPR spectrum. Another advantage is that the number of 
signals increases linearly with the number of nuclei thanks to the selection rules for nuclear 
spin transitions, in contrast to the quadratic increase in a normal EPR spectrum, see Fig. 5.6. 
For these reasons, ENDOR has become an important branch of EPR spectroscopy. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.9 Energy levels, 
EPR-spectrum, and 
ENDOR spectrum of hyper 
fine interaction (or super 
hyper fine interaction) 
between an electron spin 
S = ½ and a nuclear spin 
I = 5/2.  
 
 
 
Figure 5.9 explains 
ENDOR detection in 
cw-EPR. The 
transitions between the 

magnetic quantum numbers of the electron spin adhere to the selection rule ΔmS = ±1, ΔmI = 0, 
the transitions between the nuclear spins obey the rule ΔmI = ±1, ΔmS = 0. The electron ground 
state splits in an external magnetic field B0 corresponding to mS = ±½. g refers to the electron 
g-factor and μB is the Bohr magneton. Further splitting comes from the hyper fine interaction 
constant a proportional to mI. An additional shift in the energy levels results from the nuclear 
Zeeman energy mI γhB0, in which γ is the gyromagnetic factor of the nucleus. In the figure, the 
nuclear Zeeman energy is smaller than the hyper fine interaction, E = mS gμB(B0 + a mI) − mI 
γhB0. The dotted transitions ΔmS = ±1 show the EPR spectrum. The appearance of an ENDOR 
spectrum requires that one of the EPR transitions can be saturated by an strong microwave 
field. In Fig. 5.9, this transition is ΔmS = ±1 and mI = ½. Another high frequency field in the 
NMR frequency range is input with a frequency that increases in time (frequency sweep, 
similar to the otherwise common field sweep in EPR, see chapter 5.6). With a fixed magnetic 
field, the sweep interval of this high frequency in the MHz range covers the sum and difference 
of the Larmor frequency of the nuclear spin and half the frequency constant of the hyper fine 
interaction. If the high frequency now has the values ν+ or ν−, then transitions can be induced 
which remove the balance of the occupation numbers of the levels caused by the saturation. 
The resulting difference in the occupation numbers causes microwave absorption, which can be 
measured with the EPR apparatus. 
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Pulse ENDOR spectroscopy does away with the irritating side-effects associated with the 
permanent saturation of the EPR transitions. It takes advantage of the fact that occupations are 
reversed by π pulses. On the one hand, an mS = +½ becomes mS = −½ after a resonant 
microwave π pulse, and on the other hand mI = +½ becomes mI = −½ after a high frequency π 
pulse. If an electron spin echo is created with microwave pulses, the echo can be removed by 
the simultaneous input of a resonant high frequency π pulse. If the high frequency is modified 
at constant magnetic field strength and constant microwave frequency, we get an pulse 
ENDOR spectrum. 
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