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5 The Theory of Chemical Bonds 
5.1 Heteropolar and Homopolar Bonding 
The heteropolar bond of a molecule, for example the salt molecule NaCl, cf. Fig. 5.1, can be 
explained using electrostatics. When the Na atom gets close to the Cl atom, the transfer of an 
electron from Na to Cl results in a reduction of the total energy, and the ions are held together 
by an electrostatic bond. The electron transfer and potential difference of the cations with 
respect to the neutral atoms can only be explained with quantum mechanics. 
 

 
Fig. 5.1 Potential energy E for the ionic and 
covalent bonds of a chlorine atom with a 
sodium atom (vapor state) as a function of 
the distance between the nuclei R, from Fig. 
1.2 Haken and Wolf 
 
 
 
 
 
 
 
 
 

In homopolar bonding, there is no transfer of charge. The simplest example is the hydrogen 
molecule H2. The most important characteristics of this bond can be clarified with the H2

+ ion, 
which has already been dealt with in chapter 4.1.2. As a refresher, we begin with equations 
4.16-17 from chapter 4, here equations 1-2. 
 
5.2 The Hydrogen Molecular Ion H2

+ 

In a molecular ion, the wave function of an electron near the nuclei A and B, can be described 
by the overlapping of two atomic orbitals: 
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 (5.01) 

 
The normalization factor N guarantees the usual normalization condition for probability 
waves: ∫ψ2dτ = 1, as applied to molecular orbitals. S refers to the so-called overlap integral. 
Equation (5.01) is a Linear Combination of Atomic Orbitals = LCAO. Although the s-orbitals 
have a spherical symmetry, the molecular orbital of equ.(5.01) only has rotational symmetry 
with respect to the bonding axis. Rotationally symmetric electron densities are generally 
called σ-orbitals, and the complete label for the state in equ.(5.01) is the 1sσ-Orbital.  
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Fig. 5.2  The symmetric wave functions of the H2
+ 

ion according to equ.(5.01). The dotted lines show 
the atomic orbitals, the solid curve show the wave 
function of the LCAO orbital along the nuclear 
bonding axis.  
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Figure 5.2 uses the radial dependency ψ ≈ exp(−r/a0) with a0 ≈ 53 pm, cf. chapter 4.1.1, for 
the wave function of the atomic orbitals. During the calculation of the eigenvalues of the 
Schrödinger equation with equ. 4.15, we get integrals which contain the square of the wave 
function of an atomic orbital (∫ψ1*H ψ1dτ). These integral represent the Coulomb interaction 
energy between the electron density and nuclear charge. Other exchange integrals 
(∫ψ1*H ψ2dτ) contain the product of the wave function of both atomic orbitals and 
characterize the quantum mechanical effect that an electron is partially in both states at the 
same time. This exchange integral creates the bonding effect.  
 
A plausible explanation instead of the quantum mechanical derivation and numerical 
calculation is possible with the help of Fig. 5.2: For the LCAO state in Fig. 5.2, the 
probability of finding an electron between the nuclei is rather large (one builds the square of 
the wave function). The electron charge between the nuclei experiences an attractive force 
from both nuclei, which leads to a reduction of the potential energy of the system. 
 
When speaking of bonding orbitals, we mean two states whose occupation by an electron 
leads to a reduction in the total energy E of the molecule. If the 1s atomic orbitals are 
subtracted rather than added, we have an antibonding orbital:  
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The term on the right in equ.(5.02) reduces the electron density between the nuclei and raises 
the total energy in comparison to the separated atoms. Such orbitals are labeled by 1sσ*, 
where the σ refers to the rotational symmetry. All antibonding orbitals are labeled with an 
asterisk (*). It is easy to create a visual portrayal by making the atomic orbital on the right in 
Fig. 5.2 (dotted line) negative and again building the sum. The square of this antibonding 
orbital shows a low charge density between the nuclei and therefore a increase in the total 
energy. 
 
In chapter 4.1.2, we referred to the poor correlation between the predictions of the LCAO 
model and experimental results, for example De(LCAO) = 1,77 eV and De(experiment) = 2,6 
eV. An improvement is reached by variation of the atomic orbitals. If we use for the radial 
dependency ψ ≈ exp(−r/a) and vary a, instead of  ψ ≈ exp(−r/a0), we get with a = a0/1,24 a 
good correlation. 
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5.3 The Hydrogen Molecule H2 

5.3.1 Variation Principle and the Method of Heitler-London 
The general (and mathematically verifiable) statement of the variation principle is that the 
exact solution of the Schrödinger equation leads to eigenvalues with the lowest energy. It is 
therefore possible to approach an exact solution of the Schrödinger equation by varying the 
wave function with the intention of minimizing the energy. This principle allows the 
complicated calculation of the wave function of the hydrogen molecule. 
 
The method of Heitler-London uses additionally the spin functions of both electrons (which 
are unaffected by the hamiltonian) and thereby leads to a bound odd wave function with 
parallel spin ψu (antisymmetric and odd with respect to the exchange of the spatial 
coordinates of the electrons), and to a bound even wave function ψe with antiparallel spin. 
We have: 
 
 Ψe, u = ψA(1) ψB(2) ± ψA(2) ψB(1). (5.03) 
 
The numbers (1) and (2) tell us what electron the wave function is referring to. For these wave 
functions, the integrals 
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are analytically determined and numerically calculated. The results are portrayed in Fig. 5.3 
(ψu is ↑↑ and ψg is ↓↑).  
 

Fig. 5.3 Binding energy of the hydrogen 
molecule as a function of the nuclear 
distance Rab, with consideration of the 
repulsive coulomb energy between the 
nuclei. In the lower curve, the electron spins 
are antiparallel, in the upper curve they are 
parallel. Taken from Fig. 4.12 Haken and 
Wolf. 

 

 
 
 
 
 

 
The energy minimum comes from the exchange integrals (∫ψ1*H ψ2dτ), as already shown 
with the hydrogen molecular ion. The correlation between this calculation (De = 3,14 eV) and 
experiment (De = 4,48 eV) is also unsatisfactory, since we did not yet consider the effect of 
the hydrogen bond.  
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5.3.2 Hydrogen Bonds According to Hund-Mulliken-Bloch 
The method of Heitler-London makes no use of the atomic orbitals. Still, by using a linear 
combination of atomic orbitals (LCAO) for the calculation of the molecular orbitals (MO) of 
the hydrogen molecule (the procedure of Hund-Mulliken-Bloch), we get poorer results than 
we would by using the procedure of Heitler-London. We start with the LCAO procedure of 
equ.( 5.01) and put in the electrons of the state described in equ.( 5.01), one after the other. 
An approach to the solution for the hamiltonian which describes the state of both electron is 
 

 Ψ(1, 2) = ψ(1) ψ(2) × spin function (1, 2). (5.05) 
 

We will use the convention from magnetic resonance of labelling with α the spin state 
(magnetic quantum number) m = +½ of an electron (or nuclear) spin s = ½, and the state 
m = −½ with β. If we use the result of the considerations of Heitler-London, where only 
antiparallel spins (αβ) play a part in the bonding, we can use an antisymmetric function 
 

 spin function = 
2

1 [α(1)β(2) − α(2)β(1)]. (5.06) 
 

This procedure gives us poorer results than Heitler-London for the hydrogen molecule, but it 
is applicable to more complicated molecules. 
 
5.3.3 Covalent-Ionic Resonance and the Generalized Approach for H2 

Heitler-London introduced a covalent wave function which has one electron at each of the 
nuclei: 
 

 Ψcovalent = N [ψA(1) ψB(2) + ψA(2) ψB(1)]. (5.07) 
 

N  is the normalization factor. The probability that both electrons are at the nucleus A or B is 
ψA(1) ψA(2) or ψB(1) ψB(2). Both states correspond to ion pairs, since in both cases we have 
two electrons at one nucleus, and none at the other. They are also clearly energetically 
degenerate. The symmetric linear combination is a purely ionic bond due to the statement in 
quantum mechanics that linear combinations of degenerate function are also solutions of the 
Schrödinger equation: 
 

 Ψionic = N' [ψA(1) ψA(2) + ψB(1) ψB(2)]. (5.08) 
 

In nature we see neither purely covalent nor purely ionic bonds, although one or the other 
bond type can be dominant. With the variable parameter c, we aim for a minimum of the 
expectation value of the energy of a wave function that is a linear combination of equations 
(5.07) and (5.08): 
 

 Ψ = Ψcovalent +cΨionic . (9) 
 

Haken and Wolf use a modified Heitler-London-approach, in which an extra part is added to 
the wave function ψA localized at nucleus A, which comes from the wave function of the 
atom B. ψA is replaced by ψA + dψB, where 0 ≤ d ≤ 1. ψB is replaced analogously. We then 
get 
 

 Ψg(1, 2) = [ψA(1)+dψB(1)] [ψB(2)+dψA(2)]+ [ψA(2)+dψB(2)] [ψB(1)+dψA(1)] (5.10) 
                = (1+d2) [ψA(1) ψB(2) + ψA(2) ψB(1)] + 2d [ψA(1) ψA(2) + ψB(1) ψB(2)]. 
 

For d = 0, equ.( 5.10) gives us the result of Heitler-London, for d = 1 the approach of Hund-
Mulliken-Bloch, and for c = 2d/(1+d2) the covalent-ionic resonance of equ (5.09). 
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5.4 Hybridization 
Hybridization refers to the mixing of atomic orbitals to produce hybrid orbitals, which occur 
in many bonds. The total energy of the molecule is reduced. This type of bond is common in 
organic chemistry, since it is typical of carbon bonds. 
 
In the ground state, the carbon atom has the electronic configuration 1s22s22px2py, which 
should be bivalent due to the two unpaired electrons. A 2s electron is raised by promotion into 
the 2pz state, which lies about 4 eV higher. This gives us the state 1s22s2px2py2pz. The four 
unpaired electrons can take part in four bonds. This leads to a significant reduction of the total 
energy, which more than compensates for the 4 eV required for the promotion of the 2s 
electron into the 2pz state. 
 
From the state 1s22s2px2py2pz we would expect three equally energetic perpendicular bonds 
and one weaker bond from the 2s electron. This contradicts the four equal tetrahedrally 
coordinated bonds which we see for example in the methane molecule. To overcome this 
problem, Pauling and Slater showed that four linear combinations of 2s, 2px, 2py and 2pz lead 
to four equal sp3 hybrid orbitals: 
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 (5.11) 

 
From equation (4.13) in chapter 4, we see that the variables x/r, y/r and z/r appear in the wave 
functions ψ2px, ψ2py and ψ2pz. From Fig. 4.10, we can see on the right side that a tetrahedron is 
build by the occupation diagonally adjacent corners of a cube (exchange of two signs). From 
equ.( 5.11) we can see that the wave function differ from each other by the exchange of two 
signs of p-orbitals. The four wave functions ψ1-ψ4 in equ.( 5.11) span the tetrahedron that we 
expect for the bonds of the carbon atom. The (non-geometric) orthogonality of the functions 
ψ1-ψ4 can be easily shown by calculation of the integrals ∫ψi*ψjdτ, where we refer to the 
orthogonality of the wave functions for 2s, 2px, 2py and 2pz. 
 
When the four wave functions of equ.( 5.11) each build a corner of the carbon tetrahedron, we 
can build the methane molecule using the LCAO method by saying that every corner of the 
carbon tetrahedron is bound to a hydrogen atom. For example: for the bond in the corner with 
the number 1, we have: 
 
 ψ1 = ψC1 + cψH1, (5.12) 
 
where the constant c is determined using a variation method.  
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 Fig. 5.4. Density distributions of electrons in 
the tetragonal (top) and trigonal (middle) 
hybridisation of carbon in a single bond. In 
the top and middle on the right, the parts are 
drawn separately (explosion representation). 
On the bottom, the hybridizations of ethylene 
are shown. The figure on the left shows the 
sp2 parts, which are each composed of three 
electrons, while in the figure on the right, the 
fourth electrons from the pz-orbitals build a 
second carbon bridge. Taken from Fig. 4.15-
17 Haken and Wolf 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Beside the sp3 hybridization, we have still other hybridizations of the carbon atom, for 
example the sp2-hybridization, cf. Fig. 4 middle, which has the orthogonal wave functions 
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 (5.13) 

 

These build a simultaneous triangle in the x-y plane. These wave functions do not involve the 
pz-orbital, which takes part in bonds independent of the sp2-orbitals. In the ethene molecule, 
both of the carbon atoms each have two hydrogen atoms in an sp2 configuration, and the third 
sp2 orbital serves as a bridge between the carbon atoms. On the other hand, the two pz-
electrons of both carbon atoms form another bond through a linear combination, which leads 
to a double bond between the carbon atoms, cf. Fig. 5.4 bottom.  
 
5.5 Benzen, Parity of Ethene, and the Hückel Method for Butadiene 
We will use the symmetry operation C6 on benzene, and consider the atomic orbitals 2pz. 
From equation (4.13) of chapter 4 we see that the variables z/r appear in the wave function of 
the atomic orbital ψ2pz. From that we conclude that a rotation around the z-axis has no effect 
on the wave function: 
 

 C6ψ2pz = ψ2pz. (5.14) 
 

The same is true for the hamiltonian, which has the same effect on all symmetric bonds: 
 

 C6H (r) = H (r). (5.15) 
 

If we multiply the C6-operator from the left with the Schrödinger equation, we get 
 

 C6 H (r) ψ(r) = C6 E ψ(r)    →    H (r) C6ψ(r) = C6 E ψ(r). (5.16) 
 

Comparison of these two equations (5.16) gives us: 
 

 C6 H (r) − H (r) C6 = [C6,H (r)] = 0. (5.17) 
Since the commutator is zero, the rotational operator and the hamiltonian commute. 
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Supposed there is no energy degeneration, the wave function should only be changed by a 
constant factor λ after a rotation operation: 
 

 C6  ψ(r) = λ ψ(r). (5.18) 
 

λ can be determined by taking advantage of the property that after six C6 operations, we have 
the complete identity 
 

 (C6)6 = λ6 = 1 (5.19) 
 

The six solutions of this equation are given by 
 

 λ = exp(2πik/6)   with k = 0, 1, 2, 3, 4, 5 (5.20) 
 

Now let us again make use of the condition that the state of a degenerate system is given by a 
linear combination of wave functions of a single energy eigenvalue. From the atomic orbitals 
ψ1 to ψ6 we get the molecular orbital 
 

 ψ = c1ψ1 + c2ψ2 + ... + c6ψ6. (5.21) 
 

The use of the operation C6 gives: 
 

 C6ψ = λ(c1ψ1 + c2ψ2 + ... + c6ψ6) = c1ψ6 + c2ψ1 + ... + c6ψ5. (5.22) 
 

Since the wave functions are an orthogonal set of functions which are linearly independent, 
the coefficients in the middle on the right side of equ.(5.22) have to be the same. We get  
c1 = λc6, ..., c2 = λc1. Multiple use (j-times) of the procedure in (5.22) gives ck = λjck−j.  
With equ.(5.20) we arrive at the wave function of the π-electrons of the benzene molecule, 
which still needs to be normalized, 
 

 ψ ≈ . (5.23) (∑
=

π
6

1
6/ i2exp

j
j kjψ )

 

Parity can be demonstrated on the wave function of ethene: 
For the operations of inversion and reflection, double application gives the complete identity: 
 

 ψ(r) = λ2 ψ(r)   →   λ = ±1. (5.24) 
 

From that we get for inversion 
 

 ψ(−r) = ±ψ(r). (5.25) 
 

The upper sign refers to even parity, the lower to odd parity. With the double bond of ethene 
lying in the z-direction and the variables z/r in the wave functions of the atomic orbitals ψ2pz 
we get 
 

 ψ1(r) = −ψ(r – RAB/2)   and   ψ2(r) = −ψ(r + RAB/2), (5.26) 
 

where the following parities for the atomic wave function ψ1 and ψ2 are valid: 
 

 ψ1(−r) = −ψ2(r)   and   ψ2(−r) = −ψ1(r). (5.27) 
 
For the construction of the MO we build the linear combination 
 

 ψ(r) = c1ψ1(r) + c2ψ2(r). (5.28) 
 

Equation ( 5.28) put into equ.( 5.27) together with equ.( 5.25) gives 
 

 c1ψ1(−r)+c2ψ2(−r) = −c1ψ2(r) − c2ψ1(r) = ±c1ψ1(r)±c2ψ2(r). (5.29) 
 

From that we conclude that c1 = ±c2 for even and odd parity, and equ.( 5.24) gives us 
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 ψ(r) = cψ1(r) ± cψ2(r),  (5.30) 
 
where the even parity represents a bonding orbital and the odd parity and antibonding orbital. 
 
The explanation of the secular determinant, cf. equ.( 5.33), is a prerequisite for the 
understanding of the Hückel approximation. For this we will us the LCAO approach with 
only 3 atomic orbitals: 
 
 ψ = c1ψ(1) + c2ψ(2) +  c3ψ(3). (5.31) 
 
The determination of the coefficients is done by simultaneously solving three secular 
equations of the form 
 
 (α1 − E) c1 + (β12 − ES12) c2 + (β13 − ES13) c3 = 0 
 (β21 − ES21) c1 + (α2 − E) c2 + (β23 − ES23) c3 = 0 (5.32) 
 (β31 − ES31) c1 + (β32 − ES32) c2 +  (α3 − E) c3 = 0 
 
The parameters αi represent the coulomb interactions ( ∫ψi*H ψi dτ ), βij labels the exchange 
interactions (∫ψi*H ψj dτ ), and Sij refers to the overlap integrals ( ∫ψi*ψj dτ ). The solution of 
these equations is the same as the solution of the secular determinant, with which we can also 
determine the energy eigenvalues: 
 

 0
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. (5.33) 

 
In the Hückel approximation, the overlap integrals Sij are set to zero. The exchange integrals 
(∫ψi*H ψj dτ ) are equal to a constant parameter β, or zero, depending on whether the atoms 
are consecutive or non-consecutive. For the secular determinant, all the elements of the 
principal diagonal are α − E, for concecutively numbered chain molecules are the elements of 
the side diagonals β and all other elements are zero. We used this Hückel-Approximation 
implicitly in benzene and ethene. 
 
In butadiene, there is a single bond between the carbon atoms in the middle, and a double 
bond between each of the outermost carbon atoms. The four 2pz-orbitals of the four carbon 
atoms are perpendicular to the plane of the carbon atoms and create the π-electron system. 
The use of the Hückel approximation gives us a determinant of the fourth order where the 
elements of the principal diagonal are α − E, the elements of the two side diagonals are β, and 
all other elements are zero. Working out the determinant, we get 
 
 (α − E)4 − 3(α − E)2β2 + β4 = 0. (5.34) 
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The polynomial of the fourth degree can be written in the 
form of a quadratic equation x2 − 3x + 1 = 0  by substituting 
x = (α − E)2/β2. This gives us x = 0,38 and 2,62 as solutions. 
From that we determine the energies of the four MO’s: 
E = α ± 0,62β  and E = α ± 1,62β. The four carbon atoms 
occupy the two lowest orbitals.  

 

 
 
 
 
Fig. 5.5 T he Hückel MO energy levels of butadiene, and its 
four molecular orbitals. The four  π electrons are delocalized 
and come from the four carbon atoms. They occupy the two 
lower orbitals, labeled with 1π and 2π.  Taken from Fig. 
14.42 Atkins. 6th ed., CD version.  
 

5.6 General Approches to the Multielectron Problem (Quantum Chemistry)  
The model of Heitler-London, presented in chapter 5.3.1 is the basis for the valence bonding 
theory (VB), which considers electron pairs to be the basic unit of special individual bonds (in 
the H2-molecule there is only one). The theory of molecular orbitals (MO) of Hund-Mulliken-
Bloch is the second common theory of chemical bonds, previously discussed in chapter 5.3.2. 
It assumes that an electrons can not be ordered into a special bond. There are especially 
simple examples of this in chapter 5.4 and 5.5. 
 

For a general description we assume N electrons with the coordinates rj, j = 1, ..., N, in a 
coulomb field of M nuclei with the (invariable) coordinate RK, K = 1, ..., M, and the atomic 
number ZK, and with further coulomb interactions of the electrons with each other. For the 
electron with the coordinate rj we get for the interaction with the nucleus the potential 
 

 ( ) ∑
= 0 −π
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. (5.35) 

 

The interaction energy of all the electrons with each other is 
 

 ∑
′< ′0 −π

=
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2

Elektron-ElektronH . (5.36) 

 

The hamiltonian of the total system is  
 

 ( ) Elektron-Elektron
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2

2
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In the Schrödinger equation 
 

 HΨ(r1, ..., rN) = EΨ(r1, ..., rN) (5.38) 
 

the wave functions also depend on the spin, even though the hamiltonian does not explicitly 
contain the spin. Already for two electron of the hydrogen molecule, the problem could not be 
solved exactly, we therefore need methods of approximation. 
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An approximation for the wanted wave function, which should give us the lowest energy, is 
given by the Slater determinant 
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ϕk(j) is the single particle wave function, in which k stands for a certain combination of the 
quantum numbers (including spin). According to the Pauli principle, k runs from 1 to N. The 
variable j contains the appropriate spin variable of the state in addition to rj, which can 
assume the values α and β. 
 
The expectation value of the energy is given by 
 
 E = ∫ψ*Hψ dτ1 ... dτN , (5.40) 
 
where the integration over τj also contains the spin variables. The calculation of the integral 
can be seen on pages 465-469 of Haken and Wolf, we get: 
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with Ek,k = ∫ϕk*Hϕk dτk. The spin part gives no contribution to the expectation value Ek,k of the 
hamiltonian of a single electron in the quantum state k. For the two other terms, consider the 
two electrons 1 and 2. The term 
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gives us the coulomb interaction energy of electron 1 in the state k with electron 2 in the state 
k'. In the following integral, both electrons are in both states:  
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Equation (5.43) is the potential of the so-called Coulomb exchange interaction. As we can see 
in equ.( 5.43), the exchange interaction is zero when the wave function of the two electrons 
do not overlap. A further simple conclusion from equ.( 5.43) is that an exchange interaction 
only occurs between electrons with the same spin. As proof, we put in ϕ = ϕ'ϕ" for the wave 
function, where ϕ" only contains the spin part, upon which the hamiltonian has no effect. 
Then we can pull out the two integrals ∫ϕk*(1)ϕk’(1) dτ1×∫ϕk*(2)ϕk’(2) dτ2 in equ.( 5.39) as a 
factor. Since only two spin wave functions exist, and these are orthogonal to each other, the 
factor is only different from zero, when k and k' belong to the same spin. 
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Warning: Coulomb and exchange integral in equations (5.42) and (5.43) refer to the 
interaction of the electrons between themselves and therefore have a different meaning than 
the equations (5.32) and (5.34), which refer to the interaction of electrons with nuclei. 
 
A procedure named after Hartree-Fock starts with the assumption that an N-electron wave 
function Ψ is described by the Slater determinant (5.39), where the functions ϕI are 
orthonormalized and the wave function Ψ gives an energy minimum. The method was 
introduced by Douglas Hartree and later modified by Vladimir Fock, in order to take the Pauli 
principle into consideration. It was introduced before computers were available for numerical 
calculations, and was the basis for the numerical methods of quantum chemistry for the 
calculation of molecules. 
 
Equations (5.35) to (5.43) are equally true for atoms. Let us consider as an example the 
sodium atom. These are the steps we shall follow: 

• Approach for the hydrogen like orbitals: 1s22s22p63s1, 
• Exclusive consideration of the 3s electrons according to equ.( 5.37), 
• Numerical solution of the Schrödinger-equation leads to a new ψ3s with lower energy, 
• Now consider one of the 2p-orbitals under the influence of the other orbitals including 

the improved ψ3s-orbitals according to equ.( 5.37), 
• The numerical solution of the Schrödinger-equation leads to a newψ2p with lower 

energy, 
• etc. 

This procedure is started again after the numerical calculation of all orbitals, and repeated 
until the orbitals and calculated energies of further repetitions do not get any better. The 
orbitals are then self consistent. That is the reason that the procedure is called the self-
consistent-field (SCF) calculation. 
 
Semi-empirical techniques combine empirical data with quantum chemical calculations. We 
could, for example, calculate small molecules using the LCAO procedure and get wave 
functions and energies as function of the coulomb integrals and exchange integrals. We could 
then approximate these energies from the ionization energies. The number of necessary 
parameters is often more than the number of experimentally measurable ones. We thus end up 
with free parameters, which have brought this method into disrepute. 
 
Ab initio techniques calculate all integrals with numerical quantum mechanical methods and 
deliver exact solutions, if there is a sufficiently good and large basic set of Slater orbitals 
(spherical functions) or Gauss orbitals (Cartesian coordinates) available. Quantum chemists 
have calculated molecular systems containing much more than 10 atoms with the help of 
super computers. 
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