
Chapter 4, page 1 

Molecular Physics   © D. Freude Chapter Structure, version November 2004 

4 Principles of Structure and Symmetry 
In this chapter we begin with the quantum mechanical description of the hydrogen atom and 
the transition from atomic to molecular orbitals. We continue then with the harmonic 
oscillator and rigid rotor. Without the aid of quantum mechanics, the splitting of the electron 
energy levels will be explained. Finally, the use of group theory for the examination of 
molecular symmetry will be demonstrated. 
 
 
4.1 The Results of Quantum Mechanics 

4.1.1 The Road to the Calculation of the Hydrogen Atom 
In 1900, Max Plank presented the relationship between the energy E and the frequency ν of 
the microscopic oscillators in a black body as 
 
 E = n h ν. (4.01) 
 
n is a natural number and h is the Planck constant, which was later named after him. In 1913, 
the quantization of the energy followed the quantization of the orbital angular momentum of 
the electron. Niels Bohr postulated in his atomic model that the electrons follow circular 
orbits around the nucleus with an angular momentum of p = n h = n h/2π. The radius is  
rn = a n2, with a = 4πε0 h

2/Zmre2, which is the orbital radius for n = 1, and Z represents the 
atomic number. The constant of nature known as the Bohr radius of the hydrogen atom is 
defined as a0 = 4πε0 h

2/me e2 ≈ 0,529⋅10−10 m. This number contains the following constants of 
nature: dielectric constant, Planck constant/2π, the rest mass of the electron, and the electric 
charge. Bohr further postulated that the electrons in these states do not emit energy according 
to the laws of classical electrodynamics. The transition from a higher energy level n' to a 
lower level n" should however emit the classically calculated difference ∆E in the from of a 
photon with the energy hν: 
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The reduced mass mr of an electron-nucleus pair is mr = memnucleus/(me + mnucleus). Janne Robert 
Rydberg found in 1889 that the wave number ~ν  (the reciprocal of the wavelength measured 
in units of cm−1 ) can be written as a difference of terms in a way analogous to equ. (4.02). 
The constant factor is calculated in an analogous equation for wave numbers and is called the 
Rydberg constant R. R∞ denotes the constant for mr = me, what is correct for a hypothetic 
nucleus with infinite mass. For the real nuclei, a correction factor of 1 + me/mnucleus must be 
taken into consideration: 
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If we set mnucleus equal to the rest mass of a proton, we get RH, which has been measured from 
the spectrum of hydrogen to be 109677,58 cm−1.  
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The particle-wave duality of material has been a topic of fundamental discussions for 
centuries. Newtons theory that light has a pure corpuscular nature was dominant for a long 
time. The wave nature of light first won acceptance among physicists in the 19th century.  
The particle nature was not, however, forgotten. In 1906, Einstein used it to explain the 
photoelectric effect. Louis Victor Prince de Broglie generalized the wave nature in 1924.  
He proposed that all particles with momentum p have a wavelength λ  given by the equation 
p = h/λ. In 1926 Max Born came to a compromise that still has validity today. He gave the 
wave function ψ(x,y,z,t), which describes the amplitude of a wave as a function of position 
and time, a fundamentally statistical meaning. The particle is not at a particular point (x,y,z) at 
time t. Rather the product ψψ* of the wave function ψ  with  its complex conjugate ψ* tells 
us the probability that a particle will be found at time t at the location (x,y,z). The wave 
function thus defined is an important part of Erwin Schrödinger’s 1926 wave equation.  
The time independent Schrödinger equation is 
 
 Hψ = Eψ. (4.04) 
 
This eigenvalue equation only has normalizable solutions ψ for certain eigenvalues of energy E. 
The solutions are called eigenfunctions. E can be considered as a numerical factor. It stands for 
the ensemble of the discrete eigenvalues of a quantum mechanical system that can be observed. 
The operator H denotes a mathematical operation which has to be applied to the wave function. 
The simplest example is a non-interacting particle of mass m that moves in the x-direction along 
a potential V. In this and other examples, the operation is a double differentiation of the wave 
function ψ: 
 

 H = ( )xV
xm
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The fundamental operator of quantum mechanics H  is named after William Rowan Hamilton, 
and is called the hamiltonian (Hamiltonian operator). Hamilton described classical mechanics 
in way that served Schrödinger about hundred years later as a basis for his wave mechanics. 
For simplicity, we present the hamiltonian along with other operators without the 
recommended hat. The three dimensional representation of the hamiltonian is: 
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m
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The operator ∇2 (Nabla-squared) is called the laplacian, and is named after Pierre Simon 
Laplace. It is often written as ∆, and is explicitly written out in Cartesian coordinates as 
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and in spherical coordinates as 
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r is the distance to the origin, which we will place inside the nucleus. Figure 4.1 shows a 
sphere of radius r. The vector r connects the origin in the middle of the sphere with a point P 
on the surface.  
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In polar coordinates, the point is given by P(r,θ,φ), and in Cartesian coordinates by P(x,y,z). 
To convert between the two, one can use the following equations: 
 
 x r y r z r= = =sin cos , sin sin , cos .θ φ θ φ θ  (4.09) 
 

 
The solution of the time dependent Schrödinger equation 
describes the temporal development of the system: 
 

 H ψ = i h
t∂

∂ψ .                                            (4.10) 

 
We have now arrived at the hydrogen atom, where an 
electron with the reduced mass mr and charge -e moves in 
the electric field of a nucleus with charge e. The coulomb 
potential contains r as the distance between the charges, 
and the hamiltonian becomes 
 

 H = − ∇ −
h2

2
2

2 4m
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The laplacian in polar coordinates, equ. (4.08), which 

appears complicated in comparison to its Cartesian representation, equ. (4.07), greatly 
simplifies the problem for spherically symmetrical charge distributions. A good approach to 
the problem is to introduce a wave function that is composed of products of well known radial 
and spherical functions. The wave function then looks like 
  

 ( ) ( ) ( ) ( ) ( )φθθφθψ φ ,e,, i
mn

mm
mn YrRPNrRr lllll == . (4.12) 

 

We will begin with the physical explanation of the radial component R of this equation. 
n represents the principal quantum number, l is the orbital quantum number for which l < n, 
and m (actually ml with l ≤ m ≤ l) is the magnetic quantum number which is also known as 
the orientational quantum number (orientation of the orbital angular momentum with respect 
to the direction of any magnetic or electric external field). For the radial wave function Rnl (r), 
the radius r is often replaced by the dimensionless quantity ρ = r/a0, where a0 is the Bohr 
radius of the hydrogen atom. For hydrogen-like nuclei with atomic charge Z, a0 has to be 
replaced with a0/Z. In the first three shells (n = 1, 2, 3), R(ρ) becomes 
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The radial wave functions go exponentially toward zero as ρ increases. They can, however,  
be zero or even negative, as one can easily see in R20 for ρ = 2 and ρ > 2. The probability of 
finding and electron in the radial direction is determined from the quantity 4πρ2Rnl

2.  
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Fig. 4.1 Polar coordinates. 
The range of the angles is 
0 ≤ θ ≤ π and 0 ≤ φ < 2π. 
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The Nl|m| in equ. (4.12) is a normalization factor. The θ dependent spherical function 
Pl

|m|(cosθ) for m = 0 represents the Legendre polynomials, named after Adrien Marie 
Legendre. When m ≠ 0,  they are called the Legendre associated functions of degree l and 
order |m|. On the right side of equ. (4.12),  the Laplace spherical function 
Ylm(θ,φ) = Nl|m| Pl

|m|(cosθ) exp(imφ) is used. The functions for l = 0, 1 and 2 are given in equ. 
(4.11). In consideration of further necessary transformations, we have written the Cartesian 
coordinate versions of the equations in equ. (4.14) as well. With the equations in equ. (4.09) 
and the relation exp(iφ) = cosφ + i sinφ , we become Ylm(x/r, y/r, z/r) from the representation 
of Ylm(θ,φ): 
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We are now faced with the problem of finding a spatial representation of the wave function 
( ) ( ) ( )ψ θ φ θ φr R r Yn m, , ,= l l for selected quantum numbers n, l and m. The first hurdle is the 

complex factor in the spherical function for m > 0. One result of quantum mechanics is that in 
the absence of an external field, the functions Ylm have l-fold degeneracy. In other words: l 
functions Ylm have the same energy eigenvalue. A further result of quantum mechanics is that 
linear combinations of degenerate functions are also solutions of the Schrödinger equation. 
We can immediately see in equ. (4.14) that through the addition or subtraction of functions 
with opposite signs of m, we can cancel the imaginary or real component. The combinations 
 

 ( ) ( )ψ ψ ψ ψ ψ ψ2 2 2 2 2 2
1
2 2p p,1 p 1 p p,1 p 1und

i
x y- -= − + = +, ,  (4.15) 

 

are real valued functions. The functions with m = 0 are in any case real, cf. equ. (4.14).  
By indexing the real functions, we have peaked ahead to section 4.2: Functions that belong to 
the orbital quantum number l = 0, 1 and 2, we index with s, p and d, respectively. The index 
2p stands therefore for n = 2 and l = 1. The third place in the index holds the coordinate(s) 
which the wave function depends on. If we put the respective functions from the right side of 
equ. (4.14) into the sum or difference of two wave functions with parity values of m, for 
example in equ. (4.15), we immediately recognize the coordinates x, y or z when l = 1, or z2, 
xz, yz, x2−y2 or xy when l = 2: 
 

 

.
4
15,

24
15

,
4
15,

4
15,

2
3

4
5

,
4
3,

4
3,

4
3,

4
1

232d32

22

32d3

231d3231d32

22

30d3

21p221p221p210s1

22

2

r
xyR

r
yxR

r
yzR

r
zxR

r
rzR

r
zR

r
yR

r
xRR

xyyx

yzzxz

zyx

π
=

−
π

=

π
=

π
=

−
π

=

π
=

π
=

π
=

π
=

−
ψψ

ψψψ

ψψψψ

 (4.16) 

 

The equations in equ. (4.16) help us find surfaces on which the function’s value is zero.  
To illustrate such surfaces, consider for example 2px with x = 0 and any y or z, or 3dz2 with  
z = ±3-½ r and any x or y, or 3dxz with x = 0 and any y or z, or z = 0 and any y or x.  
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The equations (4.12), (4.13) and (4.16) now allow us to construct a 3-dimensional depiction 
of the wave functions for n = 1, 2 and 3. Let’s begin with the spherical s-orbitals. 1s has no 
radial zero points, 2s has one, and 3s has two. We will depict a cross-section of the orbitals 
(for example z = 0), where the darkness of the shades of gray in Fig. 4.2 increases with the 
value of the wave function. One problem of this presentation becomes apparent with the 3s-
orbital: According to equ. (4.13), the middle ring has a negative value of the wave, while all 
the other rings have positive values. The difference of signs can’t be seen using this method.  
 

A simpler method is necessary for the more complicated p and d orbitals. We divide space 
into the smallest possible regions with a 90% probability of containing the electron. The rest 
of space only has 10% of the electron density. In three dimensions, we draw the surface areas 
of these volumes, or in two dimensions the boundary lines. Only the 1s-Orbital is portrayable 
with only one closed region. We will also label the separated regions with the sign of the 
wave function in those regions. The simplest p-orbitals are the 2p-orbitals, and the simplest d-
orbitals are the 3d-orbitals. Fig. 4.4 shows the 3-dimensional portrayal of these orbitals. 
 

Fig. 4.2 The s-orbitals of the hydrogen atom, left 1s, lower left 
2s. The values of the radial wave function are represented by 
different colors (or shades of gray). Below is an s-orbital 
showing the 90% (from Atkins, Fig. 13.11+13.12). 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Fig. 4.4 (at right) The 2p orbitals of the hydrogen atom. 
The nodal planes go through the nucleus. Yellow and 
orange (or light and dark) areas describe different signs 
of the wave function. (Atkins, Fig.13.17).  
 

For visualization of the atomic orbitals of hydrogen, 
refer to: http://www.orbitals.com/orb/ov.htm and  
http://www-wilson.ucsd.edu/education/pchem/qm/orbvisual.html 
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The previous equations are only true for the hydrogen atom, and have to be slightly modified 
for hydrogen-like atoms, and atoms with a single electron in the outer shell. We will skip the 
quantum mechanical description. A description of the splitting of the electron energy levels 
for multi-electron systems and linear molecules is done in chapter 4.2, without an explanation 
of the quantum mechanical basis. 
 
4.1.2 From Atomic to Molecular Orbitals 
The simplest molecule to calculate is the hydrogen molecular ion, which is composed of one 
electron and two nuclei of one proton each. But even the treatment of this three body problem 
is so difficult, that we will first introduce an approximation that considers atomic states to be 
independent of electron states. This simplification, which is known as the Born-Oppenheimer-
approximation, is justified because the nuclei, which are very heavy in comparison to the 
electron, hardly react to a change of the electron state. With this approximation, the problem 
is reduced to the one-particle Schrödinger equation of an electron in the potential of nuclei A 
and B with the distance R. The potential that the electron feels can thus be replaced by 
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In the hamiltonian appears the electron mass me, which is assumed to be infinitesimal in 
comparison to the nuclear masses: 
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By comparing equ. (4.18) with equ. (4.11) it is important to note that the total energy E is 
composed of the eigenvalue of the Schrödinger equation and the repulsion of the nuclei: 
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Let us now make the assumption that the electron is near the nucleus A (or B). In that case we 
can disregard the term 1/rB (or 1/rA), because rA « rB (or rB « rA), and equ. (4.18), like equ. 
(4.11), describes the atomic orbitals. Accordingly, the wave function of an electron near a 
nucleus in a molecular ion should be described by the overlapping of two atomic orbitals: 
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The normalization factor N ensures the usual normalization condition ∫ψ2dτ = 1 in relation to 
the molecular orbital. S refers to the overlap integral. equ. (4.20) is a linear combination of 
atomic orbitals. (Linear Combination of Atomic Orbitals = LCAO). Although the s-orbitals 
have a spherical symmetry, the molecular orbital defined in equ. (4.20) has only a rotational 
symmetry about the axis connecting the nuclei. Such rotationally symmetric electron densities 
are generally referred to as σ-orbitals (see chapter 4.2), and specifically the state in equ. (4.20) 
is the 1sσ-orbital.  
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Bonding orbitals are states whose population with a single electron leads to a reduction of the 
total energy E of the molecule. If we consider the dependency of this energy on the distance r 
between the nuclei of a diatomic molecule, the energy decreases from a fixed value at r = ∞ 
and E = 0 (convention for the energy scale) to a minimum at r = re and E = −De (see Fig. 4.4). 
The reason for this reduction is the increase in the electron density in the internuclear region 
resulting from the increasing overlapping of the atomic orbitals. At the minimum, this effect is 
compensated by the repulsion of the two nuclei. With the LCAO-approximation for H2

+, the 
equilibrium bond length re = 130 pm and the spectroscopic dissociation energy is calculated to 
be De = 1,77 eV. The experimentally determined values are re = 106 pm and De = 2,6 eV.  
 

This shows that the LCAO methods for the 
calculation of molecular orbitals fail to give exact 
values even for the simplest example. That does 
not, however, affect their usefulness for a 
qualitative description of molecular orbitals. 
 

Fig. 4.4  Potential curve of a diatomic molecule. 
The distance between the nuclei at the minimum is 
referred to by re and the minimum of the energy is 
De below the value 0 for the dissociated molecule 
(r = ∞). 
 
 
An antibonding orbital is created when the 1s atomic orbitals are subtracted rather than added: 
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The term in the lower right of equ. (4.21) reduces the electron density between the nuclei and 
raises the total energy compared to the separated atoms. That orbital is referred to with 1sσ*, 
where σ again refers to the rotational symmetry. All antibonding orbitals sport a asterisk. 
We will consider molecules composed of two identical atoms from the 2nd period for the 
further description of molecular orbitals. The same considerations that we used for H2

+  are 
valid for 2sσ and 2sσ*. However, we now also have the 2p orbitals that we label 2px, 2py and 
2pz in accordance with equ. (4.15). The z-direction points along the bonding direction in a 
diatomic molecule. Because of the rotational symmetry of a diatomic molecule, the 
combinations of the 2px orbitals should not be differentiable from the combinations of the 2py 
orbitals, but should be different than the 2pz orbitals: 2px,y + 2px,y gives 2px,yπ, 2px,y − 2px,y 
gives 2px,yπ*,  2pz + 2pz gives 2pσ* and 2pz - 2pz gives 2pσ. The π orbitals have a nodal plane 
through the molecular connection axis in the z direction. 
 
In the upper shells there are, in general, non-bonding orbitals in addition to the bonding and 
antibonding orbitals. These orbitals have no influence on the total energy of the molecule. If 
d-electrons in the third or higher period are involved, we are dealing with δ orbitals (see 
chapter 4.2).  
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Fig. 4.5  The figures above show a few molecular orbitals and orbital energies from P. Atkins: 
Physical Chemistry, 6th ed., CD version. 

Fig. 14.22 taken from Atkins: A partial 
explanation of the origin of bonding 
and antibonding effects. (a) In a 
bonding orbital, the nuclei are attracted 
to the accumulation of electron density 
in the internuclear region. (b) In an 
antibonding orbital, the nuclei are 
attracted to an accumulation of electron 
density outside the internuclear region. 

Fig. 14.23 taken from Atkins: A molecular orbital energy level 
for orbitals constructed from the overlap of H1s orbitals; the 
separation of the levels corresponds to that found at the 
equilibrium bond length. The ground electronic configuration of 
H2 is obtained by accommodating the two electrons in the lowest 
available orbital (the bonding orbital). 

Fig. 14.25 taken from Atkins: According to molecular 
orbital theory, σ orbitals are built from all orbitals that 
have the appropriate symmetry. In homonuclear 
diatomic molecules of Period 2, that means that two 2s 
and two 2pz orbitals should be used. From these four 
orbitals, four molecular orbitals can be built. 

Fig. 14.26 and 14.27 taken 
from Atkins: A schematic 
representation of the 
composition of bonding σ, 
antibonding σ*, π bonding 
and antibonding π* 
molecular orbitals built from 
the overlap of p orbitals. 
These illustrations are 

h ti

Fig. 14.29 taken from Atkins: The molecular orbital 
energy level Fig. for homonuclear diatomic molecules. 
As remarked in the text, this Fig. should be used for O2 
and F2. 
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4.1.3 The Harmonic Oscillator 
A particle undergoes a harmonic oscillation in the x-direction, if the force F and potential V 
on it are described by 
 

 F = −fx     and      V = ½ fx2. (4.22) 
 

f represents the force constant. Putting this potential into the Schrödinger equation, see equ. 
(4.04) and equ. (4.05), leads to the Weber differential equation 
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The Substitutions that led to the Weber equation in equ. (4.23) are 
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ε can be rewritten as ε ω=
E

1
2
h

, if we make use of ω =
f
m

 as the classical angular frequency 

of the harmonic oscillator. Although the harmonic oscillator is described by the motion of a 
single particle in a force field, the simplest example in spectroscopy is the motion of two 
atoms of a diatomic molecule around the common center of mass. In this case we have to 
replace the mass m in equ. (4.23) with the reduced mass mr, and note that x = r − re represents 
the displacement of the interatomic distance r  relative to the equilibrium distance. 
 

A solution to the Schrödinger equation (4.23) ca be found with ψ = H exp(−y2/2). It results the 
hermitic differential equation, with its (for mathematicians) well-known solutions:  
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H2 2 1 0− + − =ε . (4.25) 
 

If we select H(y) as a polynomial, ψ falls to zero for large y. Finite solutions of this 
differential equation exist only for ε = 2v + 1 where v = 0, 1, 2, ... ,. This leads to 
 

 Ev = (2v + 1) ½ hω. (4.26) 
 

The corresponding wave functions are shown in Fig. 4.6. They are calculated from  
 

 ψv = Nv Hv (y) exp(−y2/2). (4.27) 
 

Nv = [(hπ/mω)1/22v
 v!]−1/2 is a normalization factor for the benefit of the integral ∫ψ2dy = 1. The 

hermitic polynomials are 1, 2y, 4y2−2, 8y3−12y and 16y4−48y2+12 where v = 0, 1, 2, 3 and 4. 
The general equation for the calculation of this polynomial is 
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The integral ∫ψ(v)ψ(v')dy disappears by replacing two different wave functions for   
v and v' in ∫ψ(v)ψ(v')dy, as is necessary for orthogonal wave functions.  
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Fig. 12.18 taken from Atkins : The normalized wave function and 
probability distribution (shown also by shading) for the first 
excited state of a harmonic oscillator. 
 
 
 
 
 
 

 
 
 
Fig. 12.19 taken from Atkins : The 
normalized wave functions for the first five 
states of a harmonic oscillator. Even values of 
v are black; odd values are green. Note that 
the number of nodes is equal to v and that 
alternate wave functions are symmetric or 
antisymmetric about y = 0 (zero 
displacement). 
 
 
 
 
 

 
 
 
 
 
Fig. 12.20 taken from Atkins : The probability distributions 
for the first five states of a harmonic oscillator represented by 
the density of shading. Note how the regions of highest 
probability (the regions of densest shading) move towards the 
turning points of the classical motion as v increases. 
 
 
 
 
 
Fig. 4.6  The wave function ψ and probability density ψ2 of 

the harmonic oscillator, from Atkins: Physical Chemistry, 6th ed., CD version.  
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4.1.4 The Rigid Rotor 
Let us now consider two special cases of rotation: the diatomic or linear molecule and a 
molecule with a rotationally symmetric tensor of inertia. Spherical coordinates are convenient 
for the description of the rigid rotor, because the radius r has a constant value. In a linear 
rotor, we can ignore the rotation around the molecular axis because of the very small inertial 
moment. The axis of rotation orients itself perpendicular to the molecular axis due to the 
centrifugal force, i.e. θ = π/2 is a constant value. For the calculation of the wave function and 
energy eigenvalues, we use the Schrödinger equation, equ. (4.04) and equ. (4.06), though the 
potential V is zero. The Laplace operator, equ. (4.08), is simplified by the fact that the 
derivatives relative to r (and θ  in linear molecules) are zero. The result for a diatomic 
molecule with the reduced mass mr, the radius of gyration r, and the moment of inertia 
I = mr r2 perpendicular to the molecular axis is 
 

 H ψ= ψ
φ
ψ E

rm
=

∂
∂

− 2

2

2
r

2

2
h . (4.29) 

 
That leads to the differential equation 
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φ
ψ
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2 2
h
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−=

∂
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with the solutions 
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2
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π

=       where    
h

IEJ 2
±= . (4.31) 

 
The quantity J with the cyclic boundary condition 
 

 ( )ϕJiexp
2
1
π

= ψJ(φ) = ψJ(φ + 2π) = [ ]( )π+
π

2iexp
2
1 ϕJ  (4.32) 

 
is reduced to the values 
 
 J = 0, ±1, ±2, ... . (4.33) 
 
J  is the rotational quantum number. The energy values follow as 
 

 
I

JE
2

22h
= . (4.34) 

 
Unfortunately, this simple derivation fails to explain experimental results. The reason is that 
we arbitrarily fixed the axis of rotation, even though all axes perpendicular to the molecular 
axis are equally probable. An agreement of the theory with the rotational spectra of linear 
molecules is reached when J2 is replaced by J(J + 1).  
 
For the consideration of rotationally symmetric non-linear molecules, we make no restriction 
to the direction of the axis of rotation, and define the rotationally symmetric tensor of inertia 
through the moment of inertia parallel to the axis of symmetry I⎥⎪ = Iz = IA, and the moment of 
inertia perpendicular to the axis of symmetry I⊥ = Ix =  Iy = IB.  
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The Laplace Operator in equ. (4.08) is reduced by the term containing the derivation with 
respect to r. For that reason, the wave function does not contain the radial component that 
represents the wave function of the electron in equ. (4.12). The spherical functions, now with 
their θ and φ dependent components, describe the rotation of the molecule around arbitrary 
axes, see equ. (4.14). Putting these functions into the potential-free hamiltonian gives us the 
following eigenvalues as a function of the quantum numbers: 
 

 ERot = 
B

2

2I
h [J(J + 1) − K2] + 

A

2

2I
h K2,      0 ≤ K ≤ J. (4.35) 

 

The rotational quantum number J stands for the orbital quantum number l, which can only be 
zero or a positive whole number. (A change of the direction of rotation is reached by the 
addition of 180° to θ, as in the above rotation in a plane.) 
 
The magnetic quantum number m, for which −l ≤ m ≤ l is true for electrons, is replaced here 
by k. The convention K = |k| is often used. Since the K in equ. (4.35) only appears to the 
second power, we could also use k instead. When K = 0, we have an axis of rotation 
perpendicular to the molecular axis of symmetry. This results in an expression which is 
analogous to equ. (4.34),  provided that J2 is replaced by J(J + 1). When K = J, and J » 1, the 
second term in equ. (4.35) is dominant. The axis of rotation is almost parallel to the axis of 
symmetry. 
 
 

 
The rotational energy levels of a 
linear or spherical rotor. Note that 
the energy separation between 
neighbouring levels increases as J 
increases. 
 

 
The significance of the quantum 
number K. (a) When |K| is close to 
its maximum value, J, most of the 
molecular rotation is around the 
principal axis. (b) When K = 0 the 
molecule has no angular momentum 
about its principal axis: it is 
undergoing end-over-end rotation. 
 
 
 
Figures 16.17-16.19  
taken from Atkins 

 
The significance of the 
quantum number MJ. All 
three Fig.s correspond to a 
state with K = 0
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4.2 Splitting the Electron Energy Levels 
Now that we have discussed the eigenfunctions of the hydrogen atom in chapter 4.1.1 and the 
transition from atomic to molecular orbitals in chapter 4.1.2., we turn to eigenvalues without 
further use of quantum mechanics. By using the Rydberg constant for the hydrogen atom RH, 
[see equ. (4.03) and subsequent equations], the eigenvalues are 
 

 E
hc R

nn ml = − 0
2

H . (4.50) 
 

The energy eigenvalues only depend on the principal quantum number n and not on the orbital 
quantum number l or the magnetic quantum number m. This is only true, if we ignore the 
rather small splittings caused by relativistic and quantum electrodynamic effects. In general 
for these quantum numbers the following inequality holds: 
 

 |m| ≤ l ≤ n − 1. (4.51) 
 

We would now expect arbitrary transitions between different triplets of quantum numbers, 
which would give us the discrete frequencies of the hydrogen atom according to equ. (4.02). 
We must, however, consider the selection rules for the transitions. These tell us which 
transitions are allowed. While the principal quantum number n can arbitrarily change its 
value, we have to make use of the following selection rules for the change in the orbital 
quantum number l and the magnetic quantum number m: 
 

 ∆l = ±1    and    ∆m = 0, ±1. (4.52) 
 

That all transitions with ∆l ≠ ±1 are forbidden results from the theorem of the conservation of 
angular momentum. A photon has spin one, which means that it has the angular momentum 1⋅h. 
If a photon is created (emitted) or destroyed (absorbed), the orbital quantum number of the 
electron can only change by one. 
 

Let us now consider the outermost electron of an alkali atom, which is often referred to as the 
valence electron. The difference between this situation and a hydrogen atom are due in part to 
the larger atomic number Z of the alkali atom and in part to the shielding of the electric field 
of the nucleus by the inner electrons. The nuclear charge, which is increased by the factor Z, 
acts without shielding on space elements of the electric charge very close to the nucleus. If the 
valence electron were far away from the inner electrons, the nuclear charge would look like a 
single elementary charge to it, because of shielding by the other electrons. When we look 
closer at the radial charge distribution of the s electrons in higher orbits, such as R20 and R30 in 
equ. (4.13), it is easy to see that they have a non zero charge density at the nucleus (ρ = 0). 
The radial charge distribution in equation (4.13) also shows that as we move from the s 
electrons (R20 and R30), to the p electrons (R21 and R31) and to the d electrons (R32), the centers 
of charge move outward. That means that the shielding effect of the inner electrons is weakest 
for an s electron and strongest for a d electron. It also follows that the energy values at the 
same principal quantum number are smallest for s electrons (s < p < d).  These effects are 
taken into account by using an effective principal quantum number neff(n, l) or with the 
quantum defect ∆(n, l). For example, the energy terms of the sodium atom are given by 
 

 ( )E
R hc

n
R hc
nnl = − = −

−
Na

eff

Na0
2

0
2∆

.  (4.53) 

The quantum defect ∆ increases as one moves from lithium to cesium in the alkaline group, 
but decreases with increasing  orbital quantum number l. It doesn’t depend much on the 
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principal quantum number n, as can be seen in the following values taken from the quantum 
defect for sodium ∆ (n, l): 1,37 (3, 0), 1,36 (4, 0), 1,35 (5, 0), 0,88 (3, 1), 0,87 (4, 1), 
0,86 (5, 1), 0,010 (3, 2), 0,011 (4, 2), 0,013 (5, 2), 0,000 (4, 3) and −0,001 (5, 3). 
 

 
Fig. 4.7   Term figure and 
spectral series of the sodium 
atom. All terms with n > 7 have 
been left out. The wavelength 
of the transitions is only shown 
for the lowest levels of each 
series. The common lowest 
level of the principal series 
(p series) is the ground state of 
the valence electron  n = 3, 
l = 0, E = −5,12 eV. The s and 
d series start from the state 
n = 3 and l = 1. The upper 
levels of the s, p, d, and f 
transitions belong to l = 0, l, 2 
and 3, respectively. 

 
The terms in Fig. 4.7 can be calculated by equ. (4.53) and the quantum defects ∆ (n, l) given 
above. The transitions obey the selection rule equ. (4.52). The levels with the same l (all the 
levels in the same column) have spectral series assigned to them. These series are labeled with 
s, p, d and f. This generally applicable notation comes from  the abbreviations for sharp, 
principal, diffuse and fundamental. The principal series (Hauptserie, main branch) contains 
all transitions between states with l = 1 and the ground state. Since the ground state is almost 
exclusively the occupied state at room temperature, the principal series dominates the 
absorption spectra. Two subordinate series (Nebenserie, side branch) starting at states l = 0 
and l = 2 have the level l = 1 in common as lowest level. They appear in the emission 
spectrum as sharp and diffuse subordinate series. The latter subordinate series becomes 
diffuse because of another fine structure shown in Fig. 4.8. Transitions from states with l = 3 
and the lowest state of l = 2 belong to the Bergmann series (fundamental series), which was 
historically and wrongly given a fundamental meaning for the atomic structure.  
 
 
 
Fig. 4.8  Fine-structure splitting of the alkali 
atoms. The energy difference of the splitting due 
to the different total orbital angular momenta is 
exaggerated in this figure. P ↔ D contains a 
forbidden transition shown with a dotted line 
alongside the line triple of the diffuse subordinate 
series. 
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Using this notation for the spectral series, an electron is called an s-electron, p-electron, 
d-electron or f-electron, if it has the orbital quantum number l = 0, 1, 2 or 3, respectively. For 
l = 4, 5, 6 etc.., the notation is continued alphabetically as g, h, i etc.  
 
In the multi-electron systems which we will treat later, the orbital quantum numbers of the 
individual electrons add to a total orbital quantum number L. The states L are labeled with S, 
P, D and F for L = 0, 1, 2 and 3 in analogy to the single electron case. 
 
The term "spin" is used to label the intrinsic angular momentum of electrons and nuclei. In the 
Stern-Gerlach experiment it was shown that electrons with the spin |s| = ½ have the spin 
quantum number s = ½. (The spin s that we introduce here and the total spin S which will be 
introduced later should not be confused with the term notation symbols s and S of the 
previous section.) By adding the orbital angular momentum and spin we get the total angular 
momentum  j = l + s for a single electron. The direction between the vectors is set for optical 
transitions by the quantum mechanical selection rule for the total angular momentum quantum 
number ∆j = 0, ±1. This only allows a parallel or antiparallel orientation between spin and 
orbital angular momentum, with j = l±½. For this reason, all energy terms except for those 
with l = 0 split into two levels. This so-called fine-structure splitting which follows from the 
interaction of orbital and spin moments in atomic fields decreases with increasing  n and l. 
All spectral lines which are determined by an s state and another state split into a doublet. 
This is true for the principal series and the sharp subordinate series (sharp side branch).  
For the splitting of the D lines of the sodium spectrum, the two wavelengths can be seen in 
Fig. 4.7. In the diffuse side branch, both contributing levels are split, and there are, in 
principle, four possible transitions. One of those is forbidden. A triplet remains, though the 
transition with ∆j = 0 has a relatively low intensity, since l and s have to change at the same 
time, see Fig. 4.8.  
 

By using capital letters to symbolize the states in multiple-electron systems, we differentiate 
them from the symbols for the electrons, for example 2p when n = 2 and l =1. In a single 
electron system, the designation 22P3/2 (read two doublet P three halves) tells us that n = 2, 
(2s + 1) = (2S + 1) =2, l = L =1 and j = J = 3/2.  
 
Multiple electrons couple in different ways. In very heavy atoms, the spin-orbit interaction of 
the individual electrons is much stronger than the interaction with the orbital momenta (or 
spin momenta) of nearby electrons. The total angular momentum J  of the system is composed 
of the sum of the total angular momenta j of the individual electrons, and we speak of jj-
coupling. Although we can see an intensive intercombination line at 254,7 nm in high-
pressure mercury lamps, which shows us a property of jj-coupling, we can still see the LS-
coupling which is typical of lighter atoms. 
 

In light atoms there is a prohibition of intercombinations between singlet and triplet terms. 
The spin-orbit interaction of individual electrons is smaller than the coupling of the orbital 
momenta or spin momenta with neighboring electrons. The total orbital momentum of the 
system is given by the sum of L and S. Here we speak of LS-coupling, which is also called 
Russell Saunders-coupling after Henry Norris Russell and Frederich Albert Saunders who in 
1925 discovered it in alkaline earth spectra. 
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Fig. 4.9  Helium singlet and triplet.  
The 11S-state has the energy 
−24,77 eV, while the 23S-state has 
−5,00 eV. The  transitions shown here 
apply to one electron, if the other 
remains in the 1s state. 
 
 
 
 
 

Fig. 4.9 shows the singlet and triplet terms of the helium atom for 1 ≤ n ≤ 5. The triplet 
splitting has been left out in this figure. In the triplet state, the electron spins add to a total 
spin of one with three possible values in an inner magnet field connected with the total 
angular momentum. They are (1, 0, −1). The spectrum with the most intense transitions lies in 
the infrared and visible region. The singlet state has oppositely aligned electron spins with a 
total spin of zero. The most intense transitions between the singlet terms lie in the ultraviolet 
region. In the transition of an electron between a singlet and triplet state, the spin has to 
change. Such transitions are forbidden and therefore occur very rarely. Due to the non-
observable intercombination helium spectroscopically behaves like two distinct species, and 
the early spectroscopist actually thought of helium as consisting of "parahelium" (S = 0 as 
known now) and "orthohelium" (S = 1). 
 

For light atoms with a resulting orbital momentum L, a resulting spin S , and a resulting total 
angular momentum J, where i  is the running index for the electrons, it holds in general:  
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 (4.54) 

 

Equations (4.54) contains sums of vectors, without saying anything about the directions of the 
vectors to be added. For this reason we don’t use them in the calculation of the sums. The fact 
that the orbital angular momenta of the individual electrons li precess around the total orbital 
angular momentum L helps us out of this difficulty. This lets us replace the vectorial addition 
of li by the addition of the related magnetic quantum numbers. With mi

l = li, li − 1, ... ,− li 
we label the 2li + 1 magnetic quantum numbers of the orbital angular momentum of the 
electron i. We have to introduce the superscript l of the magnetic quantum numbers of the 
orbital angular momentum, because we are trying to express a similar concept for the intrinsic 
angular momentum. In the total spin, we replace the sum of the individual spins in equ. (4.54) 
by the sum of the magnetic quantum numbers of the spins mi

s = +½ or −½. 
 

The multiplicity of the terms (singlet, doublet, triplet, etc.) is 2S + 1. We can describe them in 
an analogous way: S precesses around the direction of J (the same applies to L). From that we 
get MS = S, S − 1, ... ,−S as the magnetic quantum numbers of the total spin. These produce the 
2S + 1 time multiplicity of the terms. This is valid when L ≥ S, otherwise the multiplicity is 
only 2L + 1. Which multiplicity exists by which electron configuration can be determined by 
the total number of electrons N in the outer shell. The resulting spin for N electrons with the 
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spin s = ½ can have the maximum value of N/2 but can also take on lesser values by whole 
positive numbers. Thereby we have a maximum multiplicity of  2S +1 = N +1, and smaller 
positive values by two can also occur. That means doublet for alkali atoms, triplet and singlet 
for two electron atoms, quartet and doublet for three electron atoms, etc. The total spin of the 
electrons in a shell increases with an increasing number of electrons until the shell is half full. 
Afterwards it sinks back down to zero for a full shell. This result can be extracted from Linus 
Pauling’s 1925 exclusion principle: no more than two electrons can occupy one orbital, and, if 
two electrons are in an orbital, their spins must be paired (positive and negative). In other 
words, two electrons of a quantum mechanical system are not allowed to have all the same 
quantum numbers. 
 

The ground state of atoms can be determined using the in 1927 empirically discovered rule of 
Friedrich Hund. Consider the electrons in the outer shell (or in the outer non-closed electron 
shells of transition metals). The term with the largest possible value of S for the given electron 
number and the largest L for this S has the lowest energy. This determines S and L. For the 
total angular momentum we have J = L − S for a less than half full subshell,  J = S for a half 
full subshell, for which L = 0, and J = L + S for a more than half full subshell. For the ground 
state the vector sums in equ. (4.54) simplify to the scalar sums: 
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 (4.55) 

 

For the ground states in Tab. 4.1, the 2S + 1 multiplicities are given as leading indices, the 
letters S, P, D, F, G, H, I, K, L represent the total orbital angular momentum L = 0, 1, 2, 3, 4, 
5, 6, 7, 8 and as follow up index the total angular momentum J. To illustrate Hund’s rule, we 
will determine the ground state for two examples from the given occupation of the electron 
levels given in Tab. 4.1.: 
 

In sulfur, the shells up to 3s are completely occupied. The 3p shell contains four electrons. 
Since a p shell can contain a maximum of six electrons with ml = 1, 0, −1 and ms = 1/2, −1/2, 
we can reach a maximum total spin with three electrons with the quantum number ms = ½. 
The fourth electron has to have a spin of ms = −1/2, and the total spin therefore becomes S = 1. 
For the multiplicity we get 2S + 1 = 3 (triplet and singlet terms). If we try to optimize the total 
orbital angular momentum with this determination of the spin, we get as a sum of the total 
orbital angular momentum L = 1 (a P term) from the magnetic quantum numbers of the orbital 
angular momentum of the four electrons with  ml = 1, 0, −1, 1. Since the four electrons fill the 
shell up more than half way, occupation is J = L + S = 2. The ground state of sulfur atoms is 
therefore 3P2. 
 

As a further example let us consider uranium. The shells up to 5d and the shells 6s, 6p and 7s 
are completely occupied. There are 3 electrons in the 5f shell, and one in the 6d shell. All of 
these can have a positive magnetic quantum number of spin, which gives us S = 2 and a 
multiplicity of 5. The maximum magnetic quantum numbers of the orbital angular momentum 
are thus ml = 3, 2, 1 for the 5f electrons and ml = 2 for the 6d electron. That gives us for L = 8 
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an L state. Remember that states are written using straight letters and the quantum numbers 
written in italics. Because the shells are less than half filled,  J = L − S = 6. The ground state 
of the uranium atom is therefore 5L6. 
 
 
 1 H 2S1/2

 1s1 
 2 He 1S0 1s2 
 3 Li 2S1/2 (1s) 2s1 
 4 Be 1S0 (1s) 2s2 
 5 B 2P1/2 (2s) 2p1 
 6 C 3P0 (2s) 2p2 
 7 N 4S3/2 (2s) 2p3 
 8 O 3P2 (2s) 2p4 
 9 F 2P3/2 (2s) 2p5 
 10 Ne 1S0 (2s) 2p6 
 11 Na 2S1/2 (2p) 3s1 
 12 Mg 1S0 (2p) 3s2 
 13 Al 2P1/2 (3s) 3p1 
 14 Si 3P0 (3s) 3p2 
 15 P 4S3/2 (3s) 3p3 
 16 S 3P2 (3s) 3p4 
 17 Cl 2P3/2 (3s) 3p5 
 18 Ar 1S0 (3s) 3p6 
 19 K 2S1/2 (3p) 4s1 
 20 Ca 1S0 (3p) 4s2 
 21 Sc 2D3/2 (3p) 3d1 4s2 
 22 Ti 3F2 (3p) 3d2 4s2 
 23 V 4F3/2 (3p) 3d3 4s2 
 24 Cr 7S3 (3p) 3d5 4s1 
 25 Mn 6S5/2 (3p) 3d5 4s2 
 26 Fe 5D4 (3p) 3d6 4s2 
 27 Co 4F9/2 (3p) 3d7 4s2 
 28 Ni 3F4 (3p) 3d8 4s2 
 29 Cu 2S1/2 (3p) 3d10 4s1 
 30 Zn 1S0 (3p) 3d10 4s2 
 31 Ga 2P1/2 (4s) 4p1 
 32 Ge 3P0 (4s) 4p2 
 33 As 4S3/2 (4s) 4p3 
 34 Se 3P2 (4s) 4p4 
 35 Br 2P3/2 (4s) 4p5 

 36 Kr 1S0 (4s) 4p6 
 37 Rb 2S1/2 (4p) 5s1 
 38 Sr 1S0 (4p) 5s2 
 39 Y 2D3/2 (4p) 4d1 5s2 
 40 Zr 3F3 (4p) 4d2 5s2 
 41 Nb 6D1/2 (4p) 4d4 5s1 
 42 Mo 7S3 (4p) 4d5 5s1 
 43 Tc 6S5/2 (4p) 4d5 5s2 
 44 Ru 5F5 (4p) 4d7 5s1 
 45 Rh 4F9/2 (4p) 4d8 5s1 
 46 Pd 1S0 (4p) 4d10 
 47 Ag 2S1/2 (4d) 5s1 
 48 Cd 1S0 (4d) 5s2 
 49 In 2P1/2 (4d) 5s2 5p1 
  50 Sn 3P0 (4d) 5s2 5p2 
  51 Sb 4S3/2 (4d) 5s2 5p3 

  52 Te 3P2 (4d) 5s2 5p4 
  53 I 2P°3/2

 (4d) 5s2 5p5 
  54 Xe 1S0 (4d) 5s2 5p6 
  55 Cs 2S1/2 (4d) 5s2 5p6 6s1 
  56 Ba 1S0 (4d) 5s2 5p6 6s2  
  57 La 2D3/2 (4d) 5s2 5p6 5d16s2 
  58 Ce 1G°4 (4d) 4f1 5s2 5p6 5d1 6s2 
  59 Pr 4I°9/2 (4d) 4f3 5s2 5p6 6s2 
  60 Nd 5I4  (4d) 4f4 5s2 5p6 6s2 
  61 Pm 6H°5/2 (4d) 4f5 5s2 5p6 6s2 
  62 Sm 7F0 (4d) 4f6 5s2 5p6 6s2 
  63 Eu 8S°7/2 (4d) 4f7 5s2 5p6 6s2 
  64 Gd 9D°2 (4d) 4f7 5s2 5p6 5d1 6s2 
  65 Tb 6H°15/2(4d) 4f9 5s2 5p6 6s2 
  66 Dy 5I8 (4d) 4f10 5s2 5p6 6s2 
  67 Ho 4I°15/2 (4d) 4f11 5s2 5p6 6s2 
  68 Er 3H6 (4d) 4f12 5s2 5p6 6s2 
  69 Tm 2F°7/2 (4d) 4f13 5s2 5p6 6s2 
  70 Yb 1S0 (5p) 6s2 

  71 Lu 2D3/2 (5p) 5d1 6s2 
  72 Hf 3F2 (5p) 5d2 6s2 
  73 Ta 4F3/2 (5p) 5d3 6s2 
  74 W 5D0 (5p) 5d4 6s2 
  75 Re 6S5/2 (5p) 5d5 6s2 
  76 Os 5D4 (5p) 5d6 6s2 
  77 Ir 4F9/2 (5p) 5d7 6s2 
  78 Pt 3D3 (5p) 5d9 6s1 
  79 Au 2S1/2 (5d) 6s1 
  80 Hg 1S0 (5d) 6s2 
  81 Tl 2P°1/2 (5d) 6s26p1 
  82 Pb 3P0 (5d) 6s26p2 
  83 Bi 4S°3/2 (5d) 6s26p3 
  84 Po 3P2 (5d) 6s26p4 
  85 At 2P°3/2 (5d) 6s26p5 
  86 Rn 1S0 (5d) 6s26p6 
  87 Fr 2S1/2 (5d) 6s26p6 7s1 
  88 Ra 1S0 (5d) 6s26p6 7s2 
  89 Ac 2D3/2 (5d) 6s26p6 6d1 7s2 
  90 Th 3F2 (5d) 6s26p6 6d2 7s2 
  91 Pa 4K11/2 (5d) 5f2 6s26p6 6d1 7s2 
  92 U 5L°6 (5d) 5f3 6s26p6 6d1 7s2 
  93 Np 6L11/2 (5d) 5f4 6s26p6 6d1 7s2 
  94 Pu 7F0 (5d) 5f6 6s26p6 7s2 
  95 Am 8S°7/2 (5d) 5f7 6s26p6 7s2 
  96 Cm 9D°2 (5d) 5f7 6s26p6 6d1 7s2 
  97 Bk 6H°15/2(5d) 5f9 6s26p6 7s2 
  98 Cf 5I8 (5d) 5f10 6s26p6 7s2 
  99 Es 4I°15/2 (5d) 5f11 6s26p6 7s2 
 100 Fm 3H6 (5d) 5f12 6s26p6 7s2 
 101 Md 2F°3/2 (5d) 5f13 6s26p6 7s2 
 102 No 1S0 (6p) 7s2 
 103 Lr 2D3/2 (6p)6d17s2 
 104 - 3F2 (6p)6d27s2

 
 
Tab. 4.1  Atomic number, atom, the ground state and the occupation of the electron levels in 
the ground state. The electron shells are written in the order 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 
4f, 5s, 5p, 5d, 5f, 6s, 6p, 6d and 7s. The last filled element of this series is written in 
parenthesis in front of the other shells. The superscript contains the number of electrons in 
each shell. 
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Linear molecules have an axially symmetric electric field around the axis connecting the 
nuclei. This axis is therefore most significant for a space quantization of the orbital angular 
momentum. Besides the principal quantum number n and the orbital angular momentum 
quantum number l, the electron is indicated by the magnetic quantum number λ. The absolute 
value of the orbital angular momentum along the axis connecting the nuclei is therefore 
 
 |λ| = λh    where    λ = l, l −1, ... −l    and   |λ| ≤ l ≤ n − 1, (4.56) 
 
where both positive and negative λ values have in general the same energy. Such degeneracy 
can be removed by for example molecular rotation. When l = 0, 1, 2, 3, ... we again have  
s, p, d, f, ..., and for λ = 0, 1, 2, 3, ... we use the lower case Greek letters σ, π, δ, φ, ... . 
The pπ electron therefore has the quantum numbers l = 1 and λ = 1. 
 
For the electrons in the outer shell of a molecule we only have a week ll , ss or jj coupling in , 
contrast to the inner shells or atomic systems. The precession of the individual orbital 
momenta around the axis connecting the nuclei produces a λλ coupling. The components λ 
add, and the vector addition becomes 
 
 0or1withand ±=∆== ∑ ΛΛΛ h

i
il , (4.57) 

 
which can again be replaced by the addition of the magnetic quantum numbers λ. When 
Λ = 0, 1, 2, 3, ..., we use the capital Greek letters Σ, Π, ∆, Φ, ... as term symbols. 
 
The spins are added as vectors, as with atoms, cf. equ. (4.54), to a total spin S. The total spin 
vector S precesses around Λ and the related components of S in the direction of Λ are 
described by the magnetic quantum numbers Σ = S, S −1, ... ,−S. Again we must take care not 
to confuse the magnetic quantum numbers Σ  with the state Σ. The resulting angular 
momentum is Ω = Λ +Σ . Every term belonging to a value of Λ splits 2S + 1 times (when 
Λ < S only 2Λ + 1times). Ω is not, however, the total angular momentum of the molecule. The 
deciding contribution to the total angular momentum comes from the molecular rotation.  
 
As an example let us look at the notation for the ground state of the hydrogen molecule H2: 
(1sσ)2  1Σ0.   This means n = 1 for sσ electrons, 2 electrons, singlet due to S = 0, Σ-state due to 
Λ = 0, Ω = 0. 
 
For non-linear molecules, the states are often denoted with the letters a, b, … or A, B, …, 
which rest upon the irreducible representations which we will describe in the following 
chapter. 
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4.3 A Few Applications of Group Theory 
The systematic mathematical treatment of symmetry is called group theory. In the sciences, 
this theory is the basis for the detailed study of symmetry properties and shows often a simple 
way for obtaining useful conclusions. Even if one doesn’t know the mathematical definition 
of a group, one can apply easily understood rules of group theory to make useful conclusions 
about the properties of the symmetry of a given system. In this chapter, we will present the 
most important foundations for a few simple applications of group theory in spectroscopy. 
 
4.3.1 Point Groups 
A symmetry operation changes coordinates in such a way, that the appearance of a shape in 
space remains the same. The shape could be a geometrical figure such as a cube or a 
tetrahedron, as shown in Fig. 4.10. Rotations around the shown axes belong to the symmetry 
operations that transform cubes and tetrahedrons into themselves.  
 
  C2  C3  C3 

 C4

 
 
Fig. 4.10  Symmetry properties of figures with cubic symmetry what means more than one 
main axis of rotation. At left a cube and at right a tetrahedron enclosed by the cube. The main 
axes of rotation of the cube are three C4 axes, in the case of the tetrahedron there are four C3 
axes. There is only one of each type portrayed in the figure. 
 
To examine the symmetry properties of orbitals, molecules consisting of atoms, or the 
building blocks of crystals, we need the tools that we will develop with the example of 
symmetry operations on molecules. With a rotation around an axis of symmetry, the ammonia 
and water molecules can both exchange their hydrogen atoms in such a way that the 
orientation and shape of the molecules after the rotation are the same as they were before. 
Different atoms of a single type, in this case hydrogen atoms, cannot be distinguished in a 
symmetry operation. 
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It is clear that in water there are two (vertical) planes of reflection which lie parallel to the 
axis of rotation. These are appropriate for symmetry operations. 
 
Two symmetry operations are sufficient to describe all necessary symmetry operations. These 
two are rotation by 2π/n around an axis, and reflection in a plane. To avoid a product of 
operators when performing one symmetry operation, we use in addition to rotation and 
reflection further operators which transform molecules and crystal building blocks into 
themselves. These operators fulfill the requirements (in each point group), that we associate 
with the mathematical definition of a group: by combining two operations we get an operation 
that belongs to the same group. All the symmetry operations together build: 
 

 Cn Rotation through the angle 2π/n, 
 σ Reflection about a symmetry plane, 
 Sn Rotary reflection, 
 i Inversion at a center of symmetry, 
 E The neutral element. 
 

A rotation by 2π/n considers the number n of identical 
positions in a rotation of 360° (n-fold axis of symmetry). 
The most common is a twofold axis of symmetry. This 
means that a rotation through 180° will transform the 
molecule into itself. If a group contains several Cn axes 
with different fold axes of symmetry, the axis with the 
highest value of n is called the principal axis of 
symmetry, and is commonly taken as the z axis. 

 
 
 

Figs. 15.2+3 taken from Atkins 

Fig. 15.9 taken from Atkins: A molecule with 
a mirror plane perpendicular to a Cn axis, and 
with n twofold axes in the plane, belongs to 
the group Dnh. 
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If a reflection σ  is perpendicular to the principal axis of symmetry, it is called a horizontal 
reflection and is labeled σh. If the principal axis of symmetry lies in the plane of reflection, it 
is called a vertical reflection σv. If a vertical plane of reflection also halves the angle between 
two C2 axes, it is called a dihedral plane, and is labeled σd. Vertical and horizontal planes of 
reflection are shown in the figures on the previous page (Atkins E6 15.2, 15.3 and 15.9) and 
this page (Atkins E6 15.6). Dihedral planes exist in ethanol, where both CH3 groups lie 
exactly on spaces (point group D3d). Fig. 4.11 shows a representation of the ethanol molecule 
with the C-C bonding direction perpendicular to the drawing plane. 

 
Fig. 4.11  The C2-axes and σd-planes of an ethane molecule, 
whose atoms are lying before and behind the drawing plane. 
Hydrogen atoms are located at the points of the triangle. The 
CH3-group in the background is drawn with a dotted line. The 
second carbon atom is behind the first, in the center of the 
triangles. The C2-axes are lying in the drawing plane. 
 
 
 

Fig. 15.6 taken from Atkins: (a). A CH4 molecule has a 
fourfold improper rotation axis (S4): the molecule is 
indistinguishable after a 90° rotation followed by a reflection 
across the horizontal plane, but neither operation alone is a 
symmetry operation. (b) The staggered form of ethane has an S6 
axis composed of a 60° rotation followed by a reflection. 
 
A rotary reflection Sn contains two operations: a rotation 
through the angle 2π/n followed by a reflection in a plane 
perpendicular to the axis of rotation.  
 
An inversion occurs when the molecule is transformed into 
itself after changing the signs on all coordinates (the center of 
inversion is placed at the origin). This happens in the benzene 
molecule, which has a center of inversion in the middle of the 
ring. The inversion operation can be considered to be a 
combination of rotation and reflection with S2. 
 
The identity element E transforms every atom and therefore 
every molecule into itself. It is the only element in the C1 group that can, for example, be 
assigned to the molecule fluorine- chlorine-bromine-iodine-methane.  
 
Since all symmetry operations on finite molecules conserve a point (not necessarily an atom), 
the symmetry groups of molecules are called point groups. Two notations for point groups are 
in use: for molecules, the most common notation is that of Schönflies, which uses capital 
letters (C, D, S, T, O) and subscripts (where the number refers to the folds of the rotation and 
the lower case letters v, h, and d refer to the type of reflection plane). The international system 
(or Hermann Mauguin system) is used primarily for crystals. 32 molecular symmetry point 
groups combined with translations give us 230 possible space groups for crystals. 

 
 C2 

C2 

 C2 

 σd 

 σd 

 σd 
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Tab. 4.2  Notation for the crystallographic point groups. In the international system, the 
numbers 1, 2, 3, 4 or 6 indicate the presence of an 1-, 2-, 3-, 4- or 6-fold axis of rotation, 
m refers to a plane of reflection. A forwards slash / indicates that the plane of reflection is 
perpendicular to the axis of rotation. It is important to differentiate between symmetry 
elements of the same type, but of different classes, for example in 4/mmm, where three 
different classes of reflection plane exist (σv σh and σd). A line over the number shows that 
this element is combined with an inversion.  
 
Ci 1          
Cs m         
C1 1 C2 2 C3 3 C4 4 C6 6 
   C2v 2mm C3v 3m C4v 4mm C6v 6mm 
  C2h 2/m C3h 6  C4h 4/m C6h 6/m 
  D2 222 D3 32 D4  422 D6 622 
  D2h mmm D3h 26 m D4h 4/mmm D6h 6/mmm 
  D2d 24 m D3d 3 m S4 4  S6 3  
T 23 Td 34 m Th m3     
O 432 Oh m3m       
 
We can define a symmetry group as follows: 
• The symmetry group of a molecule contains all the symmetry operations that transform 

the molecule into itself.  
• The number of elements in a symmetry group determines its order. Each element of the 

group only appears in one class (for example C3, σv). The number of classes in a group 
gives us the number of types of symmetry described by a character.  

• The character is the ttype of a matrix, in this case the characters are the ttypes of the 
irreducible matrix representations of a point group. The number of irreducible 
representations (also called symmetries) is the number of classes in a group. The 
character tells us whether the type of symmetry with respect to the class of a symmetry 
operation is symmetric (+1), antisymmetric (−1) or degenerate (0, ±2,...). Antisymmetric 
means that a coordinate changes its sign after the operation that transforms the 
coordinate.  

• The symmetry types are labelled in the form Ag1. Thereby: 
A and B are symmetric or antisymmetric relative to Cn max, respectively. 
E  and T are twofold or threefold degenerate, respectively, and 
g  and u  are symmetric or antisymmetric with respect to an inversion i. 
 

4.3.2 The Bridge to Applications 
Tab. 4.3 The character table of the group C2v 

C2v, 2mm E C2 σ(xz)v σ'(yz)v   
A1 1 1 1 1 z z2, y2, x2 
A2 1 1 −1 −1 Rz xy 
B1 1 −1 1 −1 x, Ry xz 
B2 1 −1 −1 1 y, Rx yz 
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Table 4.3 shows the character table for the group C2v, which describes the properties of the 
H2O and SO2 molecules, among others. This determines the properties of the orbital of the 
central atom, the molecular orbital composed of atomic orbitals, the symmetric and 
antisymmetric valence vibrations, and the translation and rotation. The C2 axis of the 
molecule, which lies in the y-z plane, points in the z direction. 
 

By taking the sign 
on the wave function 
ψ into account, we 
can determine that 
the px orbital of the 
central atom is of 
symmetry type B1, 
and the LCAO 
orbital ψ = ψA − ψB 
is of symmetry type 
A2. This LCAO 
orbital is composed 
of the two px orbitals 
from the oxygen 
atoms in SO2. 

 
For the symmetric and antisymmetric valence vibrations, let us consider Fig. 4.12. The 
equilibrium position of Fig. 4.12a belongs to the symmetry type A1. The extension in the 
symmetrical vibration, Fig. 4.12b, also belongs to A1. The antisymmetric vibration of Fig. 
4.12c, however, belongs to the symmetry type B2. 
 

Fig. 4.12  (at left) Pictures of a tri-atomic molecule of group C2v 
during valence vibrations. (a) represents the equilibrium 
position, (b) symmetrical extension, and (c) extension during 
antisymmetric vibration.  
 
 
 
 
 
 
 

Fig. 4.13  (at right) Translation of a tri-atomic molecule of group 
C2v with translation in the y-direction and rotation around the 
x-axis. (a) represents the original state, (b) the displacement, 
and (c) the rotation. 
 
The equilibrium position in Fig. 4.12a always belongs to the symmetry type A1. The 
translation in the y-direction (Fig. 4.13b), can only be transformed into itself by a reflection in 
the x-z plane. All other symmetry operations change the sign of the translation. We have an 
analogous situation for rotation around the x-axis in Fig. 4.13c. Therefore y-translation and x-
rotation belong to the symmetry type B2, as is shown in the character table of Tab. 4.3. 

 

a 

b 

c 

 

 

a 

b 

c 

 z-Direction

Figs 15.24 and 15.22 
taken from Atkins 
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The intensity of a spectral line (absorption, emission, non-Raman) is proportional to the 
square of the dipole moment of the transition from state 2 to state 1, as shown in chapter 3.6, 
equ. (4.100), 
 

 M r21 2 1= ∗∫q ψ ψ τ$ d , (4.62) 
 

where ψ1 is the wave function of the state 1 and ψ2* is the complex conjugated wave function 
of state 2. r̂q  is the vector operator of the dipole moment. The dipole operator is thus the 
translation operator multiplied by the charge q. Symmetry considerations can not determine 
the value of M21, they can however tell us whether the integral and dipole moment of the 
transition is zero. This gives us spectroscopic selection rules which tell us whether a given 
transition is allowed. Allowed transitions in equ. (4.62) have an integral whose symmetry type 
is A1, Ag or Ag1. That are symmetry types where all characters equals plus one. 
 

To determine the symmetry type of the integral in equ. (4.62), multiply the symmetry types of 
the wave functions with the symmetry type of the translation. The convention for building the 
product of three symmetry types (X, Y and Z) of three classes is: 
 

 X(x1, x2, x3) × Y(y1, y2, y3) × Z(z1, z2, z3) = (x1y1z1, x2y2z2, x3y3z3) (4.63) 
 

We can see from equ. (4.63) that the totally symmetric symmetry types A1, Ag and Ag1, which 
only contain the values 1, represent the one-element of this multiplication. 
 

As an example let us consider the transition of an electron from an a1 to a b1 orbital of the 
hydrogen molecule in the C2v group. Don’t forget that the orbitals in molecules with more 
than two atoms are labelled by the symmetry type to which they belong. The a1 electron 
belongs to the symmetry type A1, which represents the one-element of the multiplication. For 
this reason it is necessary that the product of the electron b1 of type B1 with the type of the 
translation results in A1, so that the product over all three types also results in A1. It is easy to 
see that that is only possible if the translation also belongs to type B1. The character table for 
C2v (Tab. 4.3), shows that the x-translation belongs to type B1. Thus, a transition from an a1 to 
a b1 orbital of the hydrogen molecule is allowed. 
 

In general it holds for the symmetry properties of orbitals: 

• The type of symmetry of the total state is equal to the product of the types of 
symmetry of the individual electrons. 

• The type of symmetry of the electron is the same as the type of symmetry of the orbital 
in which the electron is located. 

•  If two electrons are in one orbital, their only difference is in their spin. The product of 
the types of symmetry of these paired electrons gives the total symmetric type, the 
one-element of multiplication. For the type of symmetry of the total state, we only 
need consider the outer non-filled orbitals. 

Equation (4.62) is not valid for Raman transitions. Although the electric dipole moment has 
the type of symmetry of a translation, the polarization tensor, which is important for Raman 
transitions, transforms as the dyadic tensor product of identical vectors. The product contains 
the tensor elements xixj, which means x2, y2, z2, xy, xz and yz. To see this, consider the 
following representation: 

 
U

xx
e

x
UExeE ji

ij
i

ijiijj ∆

∆∆
−=

∆
∆

−=∆== ααµ followswith from induced . (4.64) 
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4.3.3 Symmetry Considerations for of Normal Modes  
Before we demonstrate how to treat the excitation of normal modes using group theory, we 
have to define normal coordinates and normal modes of multi-atomic molecules. It is easy for 
diatomic molecules (see chapter 4.1.3): there is only one vibration and the normal coordinate 
is parallel to the bonding direction. In general it is possible to clarify the normal coordinates 
and normal modes for multi-atomic molecules (N-atomic molecules) with the following rules: 

• There are 3N−6 normal oscillations for non linear molecules without free inner 
rotation. If there are degenerate vibrations, these are counted multiple times. Let us 
clarify this using the example of the doubly degenerate bending vibration in the CO2 
molecule. Here we have one vibrational frequency which relates to two vibrations. If 
the molecule is linear, we have 3N−5 normal modes, and every free inner rotation 
reduces the number of vibrations by one. The number of normal coordinates is always 
the same as the number of normal modes. 

• In equilibrium, all normal coordinates are zero. Note that this “equilibrium” is a 
classical description in which all oscillations are frozen at zero Kelvin. One can also 
imagine the vibrating atoms to be masses connected by springs, in which 
“equilibrium” is the state where the system is at rest. Equilibrium is a useful 
description, but it doesn’t exist, even in the lowest energy state, as shown in chapter 
4.1.3. 

• If the atoms are moved from their equilibrium position in the direction of a normal 
coordinate, only the related normal mode is excited.  

 

As an example, consider the vibrations of the CO2 molecule. It is linear, and therefore has 3N-
5 = 4 vibrations: the symmetric ( s

~ν = 1340 cm−1) and anti-symmetric ( as
~ν = 2349 cm−1) 

valence vibrations and two deformation vibrations with a wave number of δν~ = 667 cm−1.   
 
Tab. 4.4 Visualization of the four normal coordinates of the oscillations of CO2. 
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The molecular axis lies in the  z-direction in Tab. 4.4, the y-direction points upwards, and the 
x-direction into the page. Starting at the left, the x and y components in the symmetric 
vibration with the angular frequency ωs are zero. In the anti-symmetric vibration ωas, the x and 
y components are also zero. In the third figure on the top of Tab. 4.4, which shows a bending 
vibration ω δ(y), the x and z components are zero. The last figure shows a bending vibration 
ωδ(x) into the page,  the y and z components are zero. The coordinates relating to the atoms O, 
C, O were denoted by the indexes 1, 2, and 3, respectively. The coordinates in the equilibrium 
state get the superscript 0, and the coordinates for the symmetric vibration, anti-symmetric 
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vibration, and the two bending vibrations get the subscripts s, as, δ(y), δ(x), respectively. The 
time-dependencies of the four vibrations (vibrational amplitude with the subscript 0) are also 
shown in Tab. 4.4. 
 

The proportionality factor c in Tab. 4.4 stands for the displacement of the coordinates of the 
carbon atom, which is determined by the condition of the preservation of the center of mass 
for the three vibrational types with the indicies  as, δ(y), δ(x). For example, if for the 
asymmetric vibration (as) the equation for the preservation of the center of mass is 
2βmO − cβmC = 0, where mO and mC stand for the masses of the oxygen atom and the carbon 
atom, respectively, we get from the well known relation of the masses of carbon and oxygen 
(approximated by. 16/12) a value c = 8/3. 
 

Using the Tab. 4.4 we can make the following statement: the symmetric normal mode (s) has 
the normal coordinate α, and the anti-symmetric normal mode (as) has the normal coordinate 
β. The normal coordinates γ and ϑ, which are perpendicular, belong to the two bending 
vibrations δ(y) and δ(x). In this case we have a degenerate normal mode. That means that both 
vibrations δ(y) and δ(x) have the same angular frequency ω δ. This is certainly possible, but 
does not necessarily follow from the above considerations. 
 

With the insights gained from equ. (4.64), and the symmetry properties of normal coordinates 
and normal modes, we come to the following procedure: 

• Use the character table and consider the symmetry properties of the integral ∫ψ2*xiψ1dτ 
(absorption spectra) and ∫ψ2*xixjψ1dτ  (Raman scattering). The integral, in the first case 
the dipole moment of the transition, equ. (4.63), is non-zero if it is totally symmetric, 
i.e. the product of the three types of symmetry of ψ2*xiψ1 and ψ2*xixjψ1 give (or contain, 
if the type of symmetry has an order greater than one) the type of symmetry A1, Ag or A1g. 
If ψ1 is the ground state and corresponds therefore to the symmetry type of the type of 
symmetry A1, Ag or A1g, the integral is then non-zero, when xi (or xixj) is of the same type 
of symmetry as ψ2. 

• The following theorem is called the Wigner-Theorem: If a system contains a certain group 
of symmetry operations, then every physically observable quantity of this system must 
also contain the same symmetry. That is why a harmonic vibration with any v" is assigned 
the same type of symmetry as its normal coordinate. The even wavefunctions of the 
harmonic oscillator are symmetric, and the odd are antisymmetric with respect to the 
normal coordinate. If a translation is transformed with the same type of symmetry as a 
normal coordinate (x, y, z, are odd functions), then the translation is anti-symmetric with 
respect to the normal coordinate, and the integral is totally symmetric because of ∆v = 1. 

• The symmetry considerations are often replaced by the following simple rules: 

activeRaman 0
d
dactive, IR0

d
d

⇒≠⇒≠
qq
αµ    

where the consideration for each vibration and their normal coordinates q must be done 
individually. 

• The dimension of the vibrational subspace of a type of symmetry is given by the sum of 
the proper and improper vibrations (Σi Dim{Ui} = 3N). After the subtraction of the 
translation(s) and rotation(s), we get the number of proper vibrations, after further 
consideration of the degeneracy of the number of basic vibrations 
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Calculation of the Dimension of the Vibrational Subspace 

 { } ( ) ik
k

k
i

i kh
h
hU χ∑= traceDim  (4.65) 

where 
χik is the value of the character table for the i –th representation and the k-th class, 
hi ≡ χi1 is the dimension of the i –th representation (= 1 for A, B; 2 for E; 3 for T), 
hk is the order of the k-th class (the number in front of the class label in the character 

table corresponds to the number of elements in the class) and 
h = Σk hk is the order of the group (number of elements in a molecular point group) 
 
The vector trace(k) consists of traces of all classes. It can be determined in the following way: 
choose 3N Cartesian coordinates (x, y, z for each atom) and check how many of the 
coordinates which are transformed into themselves after the symmetry operation in class (k) 
retain their sign (+) or change their sign (−). Trace(k) is then the sum of the signed invariant 
coordinates.  
 
A more comfortable way is to determine the number of atoms n(k) which have retained their 
locations after an operation of class k and build: 
 
 trace(k) = n(k)×α(k) (4.66) 
 
with the table 

k E σ C2 C3 C4 C6 i S3 S4 S6 C(ß) S(ß) 
α(k) 3 1 −1 0 1 2 −3 −2 −1 0 1+2cosß −1+2cosß 
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Example 1:  
If the molecule trans-dichlor ethylene is lying in the x-y-plane, we have the following 
symmetry elements: 
 
2-fold axis of revolution in the z-direction  C2  
horizontal x-y plane of reflection   σh  
center of inversion    i 
 
These symmetry operation together with the identity element E build the group C2h, for which 
we can find published character tables that correspond to the outlined part of the following 
table: 
 

C2h 
2/m 

E C2 i σh   Dim{Ui} proper 
vibration

s 

excitation / 
polarization 

Ag 1 1 1 1 Rz x2,y2,z2,x
y 

6 5 Raman-active, 
polariz. 

Bg 1 −1 1 −1 Rx,Ry xz, yz 3 1 Raman-act., depolar. 
Au 1 1 −1 −1 z  3 2 IR-active 
Bu 1 −1 −1 1 x, y  6 4 IR-active 
trac

e 
18 0 0 6   Σ=18 Σ=12  

 

From the second to the fifth column, the lowest line contains the trace of the representation, 
which apparently doesn’t only depend on the properties of the group, but also on the number 
N of atoms in the molecule, see equ. (4.66).  For this group, we have hi ≡ 1, hk ≡ 1, h = 4. This 
gives from equ. (4.65) us Dim{Ui} = (1/4) Σk trace(k) χik in the eighth column as the 
dimension of the vibrational subspace. The sum of the dimensions is 3N as expected. In every 
irreducible representation (row) we get the number of proper vibrations by subtracting the 
translations and rotations contained in the same line from the dimension of the vibrational 
subspace. The sum of all the proper vibrations of a non-linear molecule with free inner 
rotations is 3N − 6. The last column contains information about the excitement according to 
the previously explained rules. For example: Five vibrations in the symmetry group Ag are 
Raman-active, since the elements x2, y2, z2, xy in this group are transformed. We will consider 
the polarization of the Raman vibrations at the end of this chapter. 
 
Example 2:  
If we place the H2O molecule in the x-z plane, we get the following symmetry elements: 
 

2-fold axis of revolution in the z-direction C2 in z-direction 
vertical x-z-plane of reflection  σv = σ(xz) 
vertical y-z- plane of reflection   σ'v = σ(yz) 
 

H 

H 

C 

Cl 

Cl

C 

  

H H 

 O   
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These elements together with E build the group C2v, in the outlined part of the character table: 
 

C2v 
2mm 

E C2 σ(xz)
v 

σ'(yz)v   Dim{Ui} proper 
vibrations 

excitation/ 
polarization 

A1 1 1 1 1 z z2, y2, x2 3 2 IR+Raman 
polar. 

A2 1 1 −1 −1 Rz xy 1 0  
B1 1 −1 1 −1 x, Ry xz 3 1 IR+Raman depol.
B2 1 −1 −1 1 y, Rx yz 2 0  
trace 9 −1 3 1   Σ=9 Σ=3  

The trace is calculated analogously to example 1. Since the water molecule contains three 
atoms, the sum of the dimension of the vibrational subspace is 9, and the sum of the proper 
vibrations is 3. 
 
Example 3: 
The ethane molecule with the C-C-bonding in z-direction perpendicular to the drawing plane 
is shown in Fig. 4.11. The symmetry elements are C2, C3, σd, i and the rotary reflection S6. 
Together with E we have the group D3d in the outlined character table: 
 
D3d 

3 m 
E 2C3 3C2 i 2S6 3σd   Dim{Ui} proper 

vibrations 
excitation / 
polarization 

A1g 1 1 1 1 1 1  x2+y2, z2 3 3 Raman, polariz. 
A2g 1 1 −1 1 1 −1 Rz  1 0  
Eg 2 −1 0 2 −1 0 (Rx,Ry) (x2−y2, xy,

xz, yz) 
8 6 Raman, depolar. 

A1u 1 1 1 −1 −1 −1   1 1 non active 
A2u 1 1 −1 −1 −1 1 z  3 2 IR-active 
Eu 2 −1 0 −2 1 0 (x, y)  8 6 IR-active 

Ttype 24 0 0 0 0 4   Σ=24 Σ=18  
 
During the calculation of the dimension of the vibrational subspace, we have to consider that 
h = 12and that not only hi but also hk assume more than just the value 1. The internal rotation 
around the C-C bonding axis has not been considered here. The examples 1-3 have shown that 
symmetry considerations make possible the division of the normal modes into IR-active, 
Raman-active, and non-active. Using the character table, one can also make experimentally 
measurable statements about the degree of depolarisation of the Raman scattering, as shown 
in chapter 4.3.3. Thereby we have a further aid for the allocation of the lines in the Raman 
spectrum to normal modes. 
 
In molecules with a center of symmetry there is an alternative rule which says that the 
optically active vibrations of an irreducible representation are either IR-active or Raman-
active, see Example 1. Example 3 shows that there exist in addition optically inactive 
vibrations.  One can see from the character table of C2h and D3d, or from any other group with 
the class i, that elements of a translation (x, y, z) never appear together in an irreducible 
representation with the elements of a dyadic tensor product of identical vectors (x2, y2, z2, xy, 
xz, yz). From that we also can see that the vibrations of Ag and A1g are always Raman active. 
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4.3.3 Polarization of the Raman-Scattering 
 
In a scattering experiment, light sent from a source in z-
direction creates a transversal wave oscillating in the x-y 
plane. The light scattered by the sample in the x-direction 
only oscillates in the y-direction. It is therefore linearly 
polarized in the y-z-plane perpendicular to the scattering 
direction. 
 

If the polarizability P of a molecule is isotropic (αI = αxx = αyy = αzz, z. B. for CH4), the 
direction of the induced dipole moment corresponds to the direction of the incoming electric 
wave E, and the scattered light is linearly polarized. If the polarizability αij is described by an 
anisotropic tensor, then P is only parallel to E if E is parallel to the principal axis of αij in a 
monocrystal. In different orientations of the monocrystal and also in liquids and vapours, the 
light scattered at a right angle is not fully polarized.  
 
The degree of depolarization pn of a normal mode n is defined as the relation of the intensity 
Iperpendicular of the light scattered and polarized in the x-z-plane (perpendicular to the x-y-plane) 
to the intensity Iparallel of the light scattered and polarized in the x-y-plane. For unpolarized 
incoming light, see Max Born: Optik P.381: 
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The valid polarisation tensor for the vibrational Raman Effect is given by the square of the 
isotropic part (ttype of  αij) with  
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an anisotropy parameter 
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see Max Born: Optik, page 399. Ω0 and Ω are invariant with respect to a coordinate 
transformation. The matrix elements αij transform as xixj, see equ. (4.64). If the type of 
symmetry, to which a normal mode belongs, contains none of the quantities x2, y2, z2, then the 
isotropic part is not excited (no contribution to Ω0), and from equ. (4.67) we get a degree of 
depolarization of 6/7. That is the maximum depolarization. Only the representations A1g or A1 
can contain all the quadratic tensor elements, so that the Raman line is completely polarized. 
In isotropic molecules, the depolarization is zero. Everything else lies in between. 
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